Pequeños sistemas para centrales solares termoeléctricas

Transcripción

Pequeños sistemas para centrales solares termoeléctricas
Small Solar Thermal Power
Systems/ Pequeños Sistemas
para Centrales Solares
p
Termoeléctricas
Jornada de difusión técnica
Madrid, 1 de julio de 2010
UNION EUROPEA
FONDO SOCIAL EUROPEO
IMDEA Energía
• Mission:
• To promote the development of renewable
energies.
• To promote the development of clean energy
technologies having none or minimum
environmental impact.
• Research
R
h ttopics:
i
• Solar energy (high flux/high temperature).
biofuels wastes,
wastes hydrogen
hydrogen.
• Sustainable fuels: biofuels,
• Energy storage.
• Smart energy networks.
• Efficient end-use of energy
• CO2 valorisation
• 40 Researchers ((18 PhD;; 16
from foreign R&D Centers)
High Temperature Processes Unit
Objectives
Development of efficient and cost-effective
cost effective high temperature technologies
and applications with special emphasis on Concentrating Solar Power
Systems and production of Solar Fuels and Chemicals.
R&D lines
ƒ Modular concepts with minimum environmental
impact
ƒ Advanced thermal fluids for high temperature
applications and energy storage
ƒ Solar
S l receivers
i
and
d reactors
t
ƒ Solar concentration optics
ƒ High flux/high temperature characterization
techniques and simulation tools
ƒ Efficient integration schemes into power
conversion systems
ƒ Solar-driven high temperature production of H2
/Chemicals
CSP in the world
Source: Photon International (December 2009)
- Spain: 831 MW grid-connected by December 2010 and
permits assigned for 2,5 GW by 2013.
-USA: Near- to medium-term CSP pipeline over 10 GW,
with 4.5 GW to break ground by the end of 2010.
Concentrating Solar Power:
Cost and Availabilityy
• Future costs depend on many things
Initial SEGS Plants
Larger SEGS Plants
O&M Cost Reduction at SEGS Plants
Impact of 1
1-2¢
2¢ adder
for green power
Conventional Technology
for Peaking or Intermediate Power
(IEA market assumptions)
–
–
–
–
technology progress
production rates and continuity
political, economic, and financial issues
market needs and acceptance
Limitations of first-generation CSP
Commercial projects use technologies of parabolic troughs with low
concentration in two dimensions and linear focus, or systems of
central tower and heliostat fields, operating with thermal fluids at
relatively modest temperatures, below 400 ºC .
The most immediate
Th
i
di
consequences off these
h
conservative
i d
designs
i
are:
¾ the use of systems with efficiencies below 20% nominal in the
conversion of direct solar radiation to electricity,
y,
¾ the tight limitation in the use of efficient energy storage
systems,
Extresol 1 and 2 (ACS/Cobra)
¾ the high water consumption and land extension due to the
inefficiency of the integration with the power block,
¾ the lack of rational schemes for their integration in distributed
generation architectures and
¾ the limitation to reach the temperatures needed for the
generation processes following thermochemical routes of
solar fuels like hydrogen.
PS10 and PS20 (Abengoa Solar)
Impact of innovation on cost reduction
100
Scaling up
15%
90
80
R+D
60%
70
60
Market
series
25%
50
40
2005
2010
2015
2020
2025
Year
Concentrating Solar Power:
Applications and Features
Distributed Power
Dispatchable
p
Power
distributed, on-grid (e.g., line support)
stand-alone, off-grid (e.g., water
pumping, village electrification)
•
•
•
•
kW's to MW’s
utility peak and intermediate
high-value, green markets
10's to 100’s of MW's
Dispatchability:
hybridization with gas or liquid
fuels for extended Stirling or
B
Brayton
engine
i operation
i
l
• hybrid gas combined
l
cycle
coal fuel oil
coal,
oil, or gas
steam cycle
l
thermal storage for peaking,
load following, or extended
operation
Manufacturing:
l
Relatively conventional technology (glass,
(glass steel,
steel gears
gears, heat engines
engines, etc.)
etc ) allows
rapid manufacturing scale-up, low risk, conventional maintenance
Aprovechamiento Térmico de la Energía Solar de manera
Gestionable, Eficiente y Modular en Sistemas de Alta
Concentración
SOLGEMAC
1500 ºC
TODAY
9Conservative first-generation schemes
SOLGEMAC
9Efficiency (high-temperature/high-flux)
9Dispatchability (storage/hybrid)
9M d l it (small
9Modularity
(
ll size)
i )
9Environmental impact (water)
9Solar fuels
• Combustibles y química
• Ciclo Brayton
• Calentamiento aire
• Ciclo Brayton
• Calentamiento aire
10000 ºC
Receptores
cerámicos
Receptores Alta presión
cerámicos Alta temperatura Receptores
Partículas sólidas
Baja presión
Alta temperatura
Receptores
• Ciclo Brayton
• Precalentamiento aire metálicos aire
500 ºC
Temperatura
• Calentamiento aire
Motores Stirling
solarizados
• Disco Stirling
Receptores Receptores
Sodio Sales nitrosas
Receptores
Agua/vapor
Receptores
Aceite
• Calentamiento aire
• Ciclo Rankine
• Calentamiento de vapor
• Ciclo Rankine
• Calentamiento de vapor
Actualidad
• Calentamiento de vapor
Conceptos tecnológicos ACTUALES
Conceptos tecnológicos AVANZADOS
SOLGEMAC
(Imdea Energía Coord.)
MODULARITY
EFFICIENCY
A.2. SOLAR RECEIVERS/REACTORS FOR
HIGH FLUX/HIGH TEMPERATURES.
A.1. MODULAR CONCENTRATING
SYSTEMS
A.1.1. Systemas dish/Stirling
A.1.2. Multitower Modular Arrays
A.1.3. Solarization of gas microturbines
Imdea Energía (Coord.)
INTA
CIEMAT-SSC
TORRESOL
INTEGRATION
DISPATCHABILITY
A.2.1. Volumetric receivers with metallic
absorbers
A.2.2. Volumetric receivers with ceramic
absorbers
A.2.3. Particle receivers
A.2.4. Materials
CIEMAT-SSC
CIEMAT
SSC (Coord.)
(C
d)
Imdea Energía
URJC
TORRESOL
Hynergreen
y
g
A4. INTEGRATION
A.4.1. Comparison of technologies
A.4.2. Integration schemes
A.4.3. LCA and impact
A.3. ENERGY STORAGE FOR DISTRIBUTED
GENERATION CONCENTRATING SOLAR SYSTEMS.
A.3.1.Hydrogen production with thermochemical cycles
A.3.2. Hydrogen storage with MOF-type materiales.
A.3.3. Electrochemical storage
A.3.4. End-use of hydrogen in microturbines
URJC (Coord.)
CIEMAT-DQ
CIEMAT SSC
CIEMAT-SSC
Imdea Energía
UAM
INTA
Hynergreen
INTA (Coord.)
URJC, Imdea Energía, CIEMAT-SSC, CIEMAT-DQ,
TORRESOL, Hynergreen
STEPS TO SCALINGSCALING-UP SOLAR CSP & CSFC
1-5 kW
Solar Simulator
30-50 kW
Solar Furnace
1-100 MW
Central Receiver System
100-500 kW
Mini-tower
Discos parabólicos
Motor solar de Augustin
Mouchot en la exposición de
Paris de 1861 Paris
Discos-Stirling Eurodish en la
Pl t f
Plataforma
Solar
S l de
d Almería
Al
í
Discos Parabólicos con generador Stirling:
Estado de la Tecnología
g
¾
¾
¾
Varios diseños de disco y de
receptor han demostrado la alta
eficiencia necesaria para sistemas
comerciales
La durabilidad del receptor aún
necesita mejorarse
El coste del disco
colector/concentrador es crítico para
dar paso a las primeras
producciones comerciales.
STM
Solo
¾
Motores
M
t
Sti
Stirling
li
avanzados están
mostrando altas eficiencias
y durabilidades
Expectations for Cost Degression
225
200
Investm
ment cost in
n k€
175
150
Transport, Assembly
Concentrator
Drives
Stirlingmotor
Control
Turntable
Foundation
125
100
75
50
25
0
Prototype
Stuttgart
1989
DISTAL 1
1991
DISTAL 2
1995
EuroDish
2000/2001
100/Year
1000/Year
3000/Year
10000/Year
Pequeños sistemas de receptor central
Pequeños campos con pequeños
helióstatos
Configuraciones multitorre
Multitower arrays
Mini-campos con mini-helióstatos
agrupados: Recordando al Prof. Francia
• Planta construida en Italia y
montada en los EEUU en el
año 1977 en el Instituto
Tecnológico
de
Georgia
(Advanced Component Test
Facility)
•550 helióstatos
•Potencia térmica 400 kW.
kW
•Campo octogonal y torre
central (22,8 m)
•Foco
F
rectangular
t
l
d 2,44
de
2 44
m.
•Espejos con seguimiento
polar y tracking colectivo.
colectivo
ACTF de Georgia
Sistemas modulares multitorre
Comparison of Solar Power Technologies with respect to Integration in the Urban
Environment
P Schramek,
P.
S h
k D
D.R.
R Mill
Mills and
dW
W. L
Lang
Advantages of the MIUS concept
• Origin: In 1972 by US HUD. Related to Total Energy Systems,
Power Islands,, District Heating,
g, Energy
gy Cascade and Cogeneration
g
• Distributed Utility structure for large residential, commercial or
institutional building complexes.
• Typical
yp
size: 300-1,000 dwelling
g units
• Reduction of transmission and distribution costs
• Modular track of demand and spread construction costs over time
• Maximum utilization about 4,500
,
hours
• Use of single-cycle high efficiency gas turbines plus waste heat
applications like district heating, cooling, desalination or water
treatment
• Increment of solar share to 50 %
•Find a niche of size (a few
MWe)
The keys for
CRS iin MIUS
•Find modular small CRS design
•Competitive investment cost
•Perform with high efficiencies
INTEGRATION OF CRS INTO MIUS STRUCTURE
Water
13,280 GJ
7,965 GJ
Exhaust gases
Auxiliary boiler
Fuel
Space heating
2,690 GJ
Water
14,690 GJ
Hot water
Steam
22,000 GJ
Fuel
Hot gases
11,023 GJ
60,526 GJ
Domestic hot water
Absorption
p
chiller
Rejected heat
22,793 GWh
5.50 GWhe
0.21 GWhe
Air
12,000 GJ
Wasted
4,252 GJ
5 29 GWhe
5.29
Compression
air-conditioning
Domestic and auxiliary
electricity
l t i it
SOLAR TOWER
Example of a 450-unit apartment complex in Spain
MIUS Solar Tower:
Application
pp
to a shopping
pp g center
1400
- Stable demand
- 85 % during day-time
1200
- High consumption at
peak periods
1000
- Demand increase
between June and
October.
- Peaks in July and
Christmas
November
Powerr Demand (kW
We)
- Monthly differences
between 800-1,300 kW
October
December
January
February
800
March
april
600
may
June
July
400
August
September
200
Operation strategy:
0
g
Grid
- Night-time:
- From 6:00 to 20:00 solar
hybrid turbine in power island
mode
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
S
Solar
Time ((h))
Demand from 6 to 20 h: 4,348 MWe and
18,890 MWth
Proposal of a small-size tower plant
¾ Small tower and hel
heliostats
ostats that reduce vvisual
sual impact
mpact and
achieve higher field efficiencies (up to 4% more than large
area heliostats).
¾ Air as heat transfer media in a pressurized volumetric
receiver (3.4 MWth outlet).
¾ Use of an efficient (39.5 %) small solar-gas turbine (1.36
MW ) with
MWe)
ith intercooling,
i t
li
h t recuperation
heat
ti
and
d low
l
working
ki
temperature (860 ºC).
¾ Waste heat (670 kWth) at 198 ºC for water heating
g and
space cooling/heating.
¾ Operation in a fuel-saver mode
¾ A
As in
i the
th case of
f dish
di h system
t
parks,
k the
th small
ll tower
t
fi ld
fields
for distributed power should target maximum unattended
operation, to minimize O&M costs.
MIUS solar tower technical specifications
Tower optical height (m)
Number heliostats
Heliostat surface (m2)
Receiver surface (m2)
Receiver tilt angle (º)
Land (m2)
Design
g point
p
DNI (W/m2)
Power onto mirrors area (MWt)
Gross power onto receiver (MWt)
Power to turbine (MWt)
Gross electric power (MWe)
Total efficiency
Investment
Heliostats
Land
Tower
Receiver
Inst.&Control
P
Power
bl
block
k
Fixed cost
Direct capital cost
Installed cost (including turbine set)
26
345
19.2
16.5
30
38,000
Power
Efficiency
y
875
5.8
4.3
34
3.4
1.4
----
---100 %
74 %
80 %
39 %
23 %
995,765 $
62,745 $
104,575 $
484,750 $
107,000 $
1 146 000 $
1,146,000
65,350 $
2.97 M$
2,120 $/kW
Heron H1 Technical Specifications
Electrical power
Thermal power
Fuel consumption
Heat rate
Electrical efficiency
Thermal efficiency
Total efficiency
NOx emission
1,407 kWe
1,200 kWth
3,280 kW
8,392 kJ/kWh
42.9 %
36.6 %
79 5 %
79.5
<20 g/GJ
Theoretical solarization based on Turbine Heron H-1 and 10
pressurized volumetric receivers
1.0 bar
198 ºC
Intercooler
1.0 bar
573 ºC
8.9 bar
151 ºC
Recuperator
8.9 bar
573 ºC
3.0 bar
25 ºC
740 ºC
661 ºC
R1
3.0 bar
137 ºC
R4
757 ºC
R2
R5
HPC
R3
3.1 bar
635 ºC
R6
C3
PR=3 0
PR=3.0
R8
R9
R10
LPC
8.9 bar
860 ºC
C2
C1
R7
3.1 bar
860 ºC
PR=2 7
PR=2.7
1 36 MWe
1.36
PR=3.0
1.0 bar
15 ºC
Air filter
1.0 bar
15 ºC
Air inlet
m=5.15 kg/s
Heatflow
H
fl SOLAR R1
R1-R6
R6
Heatflow SOLAR R7-R10
Total
PT
= 1.95
1 95 MW
= 1.49 MW
= 3.44 MW
MIUS Solar Tower: Application to a shopping center
Solar electricity production =
Fossil electricity production =
Solar electricity excess =
2,456 MWh
1,892 MWh
428 MWh
MIUS Solar Tower: Application to a shopping center
56 % power demand supplied
by solar (683 toe)
Few hours at loads of 20 %
during start-ups
Typical solar working load 75 %
MIUS Solar Tower: Application to a shopping center
Solar is contributing to the waste heat produced with 4,374 GJ that
represents 49.5% of the heat demand.
CONCLUSIONS
¾CSP is focusing its growth still on first generation
large-fields
¾The solar field should be small and modular to account
for the maximum flexibility in approaching real
systems.
¾Up to
¾U
t 60% future
f t
costt reduction
d ti
should
h ld come from
f
R&D.
¾Solgemac
project
objectives
are
modularity
modularity,
dispatchability and efficiency by high flux/high T.
¾A potential niche for the application of dish-engine
systems and small solar towers to Modular Integrated
Utility Systems has been identified.