Pequeños sistemas para centrales solares termoeléctricas
Transcripción
Pequeños sistemas para centrales solares termoeléctricas
Small Solar Thermal Power Systems/ Pequeños Sistemas para Centrales Solares p Termoeléctricas Jornada de difusión técnica Madrid, 1 de julio de 2010 UNION EUROPEA FONDO SOCIAL EUROPEO IMDEA Energía • Mission: • To promote the development of renewable energies. • To promote the development of clean energy technologies having none or minimum environmental impact. • Research R h ttopics: i • Solar energy (high flux/high temperature). biofuels wastes, wastes hydrogen hydrogen. • Sustainable fuels: biofuels, • Energy storage. • Smart energy networks. • Efficient end-use of energy • CO2 valorisation • 40 Researchers ((18 PhD;; 16 from foreign R&D Centers) High Temperature Processes Unit Objectives Development of efficient and cost-effective cost effective high temperature technologies and applications with special emphasis on Concentrating Solar Power Systems and production of Solar Fuels and Chemicals. R&D lines Modular concepts with minimum environmental impact Advanced thermal fluids for high temperature applications and energy storage Solar S l receivers i and d reactors t Solar concentration optics High flux/high temperature characterization techniques and simulation tools Efficient integration schemes into power conversion systems Solar-driven high temperature production of H2 /Chemicals CSP in the world Source: Photon International (December 2009) - Spain: 831 MW grid-connected by December 2010 and permits assigned for 2,5 GW by 2013. -USA: Near- to medium-term CSP pipeline over 10 GW, with 4.5 GW to break ground by the end of 2010. Concentrating Solar Power: Cost and Availabilityy • Future costs depend on many things Initial SEGS Plants Larger SEGS Plants O&M Cost Reduction at SEGS Plants Impact of 1 1-2¢ 2¢ adder for green power Conventional Technology for Peaking or Intermediate Power (IEA market assumptions) – – – – technology progress production rates and continuity political, economic, and financial issues market needs and acceptance Limitations of first-generation CSP Commercial projects use technologies of parabolic troughs with low concentration in two dimensions and linear focus, or systems of central tower and heliostat fields, operating with thermal fluids at relatively modest temperatures, below 400 ºC . The most immediate Th i di consequences off these h conservative i d designs i are: ¾ the use of systems with efficiencies below 20% nominal in the conversion of direct solar radiation to electricity, y, ¾ the tight limitation in the use of efficient energy storage systems, Extresol 1 and 2 (ACS/Cobra) ¾ the high water consumption and land extension due to the inefficiency of the integration with the power block, ¾ the lack of rational schemes for their integration in distributed generation architectures and ¾ the limitation to reach the temperatures needed for the generation processes following thermochemical routes of solar fuels like hydrogen. PS10 and PS20 (Abengoa Solar) Impact of innovation on cost reduction 100 Scaling up 15% 90 80 R+D 60% 70 60 Market series 25% 50 40 2005 2010 2015 2020 2025 Year Concentrating Solar Power: Applications and Features Distributed Power Dispatchable p Power distributed, on-grid (e.g., line support) stand-alone, off-grid (e.g., water pumping, village electrification) • • • • kW's to MW’s utility peak and intermediate high-value, green markets 10's to 100’s of MW's Dispatchability: hybridization with gas or liquid fuels for extended Stirling or B Brayton engine i operation i l • hybrid gas combined l cycle coal fuel oil coal, oil, or gas steam cycle l thermal storage for peaking, load following, or extended operation Manufacturing: l Relatively conventional technology (glass, (glass steel, steel gears gears, heat engines engines, etc.) etc ) allows rapid manufacturing scale-up, low risk, conventional maintenance Aprovechamiento Térmico de la Energía Solar de manera Gestionable, Eficiente y Modular en Sistemas de Alta Concentración SOLGEMAC 1500 ºC TODAY 9Conservative first-generation schemes SOLGEMAC 9Efficiency (high-temperature/high-flux) 9Dispatchability (storage/hybrid) 9M d l it (small 9Modularity ( ll size) i ) 9Environmental impact (water) 9Solar fuels • Combustibles y química • Ciclo Brayton • Calentamiento aire • Ciclo Brayton • Calentamiento aire 10000 ºC Receptores cerámicos Receptores Alta presión cerámicos Alta temperatura Receptores Partículas sólidas Baja presión Alta temperatura Receptores • Ciclo Brayton • Precalentamiento aire metálicos aire 500 ºC Temperatura • Calentamiento aire Motores Stirling solarizados • Disco Stirling Receptores Receptores Sodio Sales nitrosas Receptores Agua/vapor Receptores Aceite • Calentamiento aire • Ciclo Rankine • Calentamiento de vapor • Ciclo Rankine • Calentamiento de vapor Actualidad • Calentamiento de vapor Conceptos tecnológicos ACTUALES Conceptos tecnológicos AVANZADOS SOLGEMAC (Imdea Energía Coord.) MODULARITY EFFICIENCY A.2. SOLAR RECEIVERS/REACTORS FOR HIGH FLUX/HIGH TEMPERATURES. A.1. MODULAR CONCENTRATING SYSTEMS A.1.1. Systemas dish/Stirling A.1.2. Multitower Modular Arrays A.1.3. Solarization of gas microturbines Imdea Energía (Coord.) INTA CIEMAT-SSC TORRESOL INTEGRATION DISPATCHABILITY A.2.1. Volumetric receivers with metallic absorbers A.2.2. Volumetric receivers with ceramic absorbers A.2.3. Particle receivers A.2.4. Materials CIEMAT-SSC CIEMAT SSC (Coord.) (C d) Imdea Energía URJC TORRESOL Hynergreen y g A4. INTEGRATION A.4.1. Comparison of technologies A.4.2. Integration schemes A.4.3. LCA and impact A.3. ENERGY STORAGE FOR DISTRIBUTED GENERATION CONCENTRATING SOLAR SYSTEMS. A.3.1.Hydrogen production with thermochemical cycles A.3.2. Hydrogen storage with MOF-type materiales. A.3.3. Electrochemical storage A.3.4. End-use of hydrogen in microturbines URJC (Coord.) CIEMAT-DQ CIEMAT SSC CIEMAT-SSC Imdea Energía UAM INTA Hynergreen INTA (Coord.) URJC, Imdea Energía, CIEMAT-SSC, CIEMAT-DQ, TORRESOL, Hynergreen STEPS TO SCALINGSCALING-UP SOLAR CSP & CSFC 1-5 kW Solar Simulator 30-50 kW Solar Furnace 1-100 MW Central Receiver System 100-500 kW Mini-tower Discos parabólicos Motor solar de Augustin Mouchot en la exposición de Paris de 1861 Paris Discos-Stirling Eurodish en la Pl t f Plataforma Solar S l de d Almería Al í Discos Parabólicos con generador Stirling: Estado de la Tecnología g ¾ ¾ ¾ Varios diseños de disco y de receptor han demostrado la alta eficiencia necesaria para sistemas comerciales La durabilidad del receptor aún necesita mejorarse El coste del disco colector/concentrador es crítico para dar paso a las primeras producciones comerciales. STM Solo ¾ Motores M t Sti Stirling li avanzados están mostrando altas eficiencias y durabilidades Expectations for Cost Degression 225 200 Investm ment cost in n k€ 175 150 Transport, Assembly Concentrator Drives Stirlingmotor Control Turntable Foundation 125 100 75 50 25 0 Prototype Stuttgart 1989 DISTAL 1 1991 DISTAL 2 1995 EuroDish 2000/2001 100/Year 1000/Year 3000/Year 10000/Year Pequeños sistemas de receptor central Pequeños campos con pequeños helióstatos Configuraciones multitorre Multitower arrays Mini-campos con mini-helióstatos agrupados: Recordando al Prof. Francia • Planta construida en Italia y montada en los EEUU en el año 1977 en el Instituto Tecnológico de Georgia (Advanced Component Test Facility) •550 helióstatos •Potencia térmica 400 kW. kW •Campo octogonal y torre central (22,8 m) •Foco F rectangular t l d 2,44 de 2 44 m. •Espejos con seguimiento polar y tracking colectivo. colectivo ACTF de Georgia Sistemas modulares multitorre Comparison of Solar Power Technologies with respect to Integration in the Urban Environment P Schramek, P. S h k D D.R. R Mill Mills and dW W. L Lang Advantages of the MIUS concept • Origin: In 1972 by US HUD. Related to Total Energy Systems, Power Islands,, District Heating, g, Energy gy Cascade and Cogeneration g • Distributed Utility structure for large residential, commercial or institutional building complexes. • Typical yp size: 300-1,000 dwelling g units • Reduction of transmission and distribution costs • Modular track of demand and spread construction costs over time • Maximum utilization about 4,500 , hours • Use of single-cycle high efficiency gas turbines plus waste heat applications like district heating, cooling, desalination or water treatment • Increment of solar share to 50 % •Find a niche of size (a few MWe) The keys for CRS iin MIUS •Find modular small CRS design •Competitive investment cost •Perform with high efficiencies INTEGRATION OF CRS INTO MIUS STRUCTURE Water 13,280 GJ 7,965 GJ Exhaust gases Auxiliary boiler Fuel Space heating 2,690 GJ Water 14,690 GJ Hot water Steam 22,000 GJ Fuel Hot gases 11,023 GJ 60,526 GJ Domestic hot water Absorption p chiller Rejected heat 22,793 GWh 5.50 GWhe 0.21 GWhe Air 12,000 GJ Wasted 4,252 GJ 5 29 GWhe 5.29 Compression air-conditioning Domestic and auxiliary electricity l t i it SOLAR TOWER Example of a 450-unit apartment complex in Spain MIUS Solar Tower: Application pp to a shopping pp g center 1400 - Stable demand - 85 % during day-time 1200 - High consumption at peak periods 1000 - Demand increase between June and October. - Peaks in July and Christmas November Powerr Demand (kW We) - Monthly differences between 800-1,300 kW October December January February 800 March april 600 may June July 400 August September 200 Operation strategy: 0 g Grid - Night-time: - From 6:00 to 20:00 solar hybrid turbine in power island mode 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 S Solar Time ((h)) Demand from 6 to 20 h: 4,348 MWe and 18,890 MWth Proposal of a small-size tower plant ¾ Small tower and hel heliostats ostats that reduce vvisual sual impact mpact and achieve higher field efficiencies (up to 4% more than large area heliostats). ¾ Air as heat transfer media in a pressurized volumetric receiver (3.4 MWth outlet). ¾ Use of an efficient (39.5 %) small solar-gas turbine (1.36 MW ) with MWe) ith intercooling, i t li h t recuperation heat ti and d low l working ki temperature (860 ºC). ¾ Waste heat (670 kWth) at 198 ºC for water heating g and space cooling/heating. ¾ Operation in a fuel-saver mode ¾ A As in i the th case of f dish di h system t parks, k the th small ll tower t fi ld fields for distributed power should target maximum unattended operation, to minimize O&M costs. MIUS solar tower technical specifications Tower optical height (m) Number heliostats Heliostat surface (m2) Receiver surface (m2) Receiver tilt angle (º) Land (m2) Design g point p DNI (W/m2) Power onto mirrors area (MWt) Gross power onto receiver (MWt) Power to turbine (MWt) Gross electric power (MWe) Total efficiency Investment Heliostats Land Tower Receiver Inst.&Control P Power bl block k Fixed cost Direct capital cost Installed cost (including turbine set) 26 345 19.2 16.5 30 38,000 Power Efficiency y 875 5.8 4.3 34 3.4 1.4 ---- ---100 % 74 % 80 % 39 % 23 % 995,765 $ 62,745 $ 104,575 $ 484,750 $ 107,000 $ 1 146 000 $ 1,146,000 65,350 $ 2.97 M$ 2,120 $/kW Heron H1 Technical Specifications Electrical power Thermal power Fuel consumption Heat rate Electrical efficiency Thermal efficiency Total efficiency NOx emission 1,407 kWe 1,200 kWth 3,280 kW 8,392 kJ/kWh 42.9 % 36.6 % 79 5 % 79.5 <20 g/GJ Theoretical solarization based on Turbine Heron H-1 and 10 pressurized volumetric receivers 1.0 bar 198 ºC Intercooler 1.0 bar 573 ºC 8.9 bar 151 ºC Recuperator 8.9 bar 573 ºC 3.0 bar 25 ºC 740 ºC 661 ºC R1 3.0 bar 137 ºC R4 757 ºC R2 R5 HPC R3 3.1 bar 635 ºC R6 C3 PR=3 0 PR=3.0 R8 R9 R10 LPC 8.9 bar 860 ºC C2 C1 R7 3.1 bar 860 ºC PR=2 7 PR=2.7 1 36 MWe 1.36 PR=3.0 1.0 bar 15 ºC Air filter 1.0 bar 15 ºC Air inlet m=5.15 kg/s Heatflow H fl SOLAR R1 R1-R6 R6 Heatflow SOLAR R7-R10 Total PT = 1.95 1 95 MW = 1.49 MW = 3.44 MW MIUS Solar Tower: Application to a shopping center Solar electricity production = Fossil electricity production = Solar electricity excess = 2,456 MWh 1,892 MWh 428 MWh MIUS Solar Tower: Application to a shopping center 56 % power demand supplied by solar (683 toe) Few hours at loads of 20 % during start-ups Typical solar working load 75 % MIUS Solar Tower: Application to a shopping center Solar is contributing to the waste heat produced with 4,374 GJ that represents 49.5% of the heat demand. CONCLUSIONS ¾CSP is focusing its growth still on first generation large-fields ¾The solar field should be small and modular to account for the maximum flexibility in approaching real systems. ¾Up to ¾U t 60% future f t costt reduction d ti should h ld come from f R&D. ¾Solgemac project objectives are modularity modularity, dispatchability and efficiency by high flux/high T. ¾A potential niche for the application of dish-engine systems and small solar towers to Modular Integrated Utility Systems has been identified.