serie de estudios biológicos - ACP-EU Co
Transcripción
serie de estudios biológicos - ACP-EU Co
MEDITERRANEA SERIE DE ESTUDIOS BIOLÓGICOS 2015 Época II Número especial COMITÉ CIENTÍFICO: G. U. CARAVELLO S. G. CONARD A. FARINA A. FERCHICHI A. A. RAMOS 1 st FISHERMAN Con la colaboración de: REGIONAL CONFERENCE Universitat d’Alacant Universidad de Alicante Invited talk by Daniel Pauly: Official vs. reconstructed marine fisheries catches in the Western Indian Im - Early regist - Registration Revista electrónica anual COMITÉ CIENTÍFICO: S. G. CONARD. USDA Forest Service. Riverside. U.S.A. A. FARINA. Lab. Ecologia del Paisaje. Museo Historia Natural. Aulla. Italia. A. FERCHICHI. I.R.A. Medenine. Túnez. G. U. CARAVELLO. Istituto di Igiene. Università di Padova. Italia. A. A. RAMOS. Dep. CC. Del Mar y Biología Aplicada. U.A. España. COMITÉ EDITORIAL: V. Peiró, A. Pastor-López, E. Seva, Germán López Iborra, Frutos Marhuenda, Alfonso A. Ramos Esplá y José Luis Sánchez Lizaso. U.A. DIRECCIÓN: Antonio Pastor. Instituto Interdisciplinar para el Estudio del Medio «Ramón Margalef» (IMEM). Universidad de Alicante. SECRETARÍA: Victoriano Peiró ([email protected]). Gestor Jefe: Gema Iglesias ([email protected]). IMEM. Universidad de Alicante. EDITA: Servicio de Publicaciones. Universidad de Alicante. http://publicaciones.ua.es CORRESPONDENCIA: Instituto Interdisciplinar para el Estudio del Medio «Ramón Margalef» (IMEM) Ap. 99 - 03080 Alicante. España. Teléfono de Secretaría: +34965903400, ext. 1184 Fax: Rev. Mediterránea. IMEM. +34965909873 I.S.S.N.: 0210-5004 Depósito Legal: A-1059-1984 Maquetación: Marten Kwinkelenberg This publication has been produced with the assistance of the European Union. The contents of this publication are the sole responsibility of the University of Alicante and can in no way be taken to reflect the views of the European Union. The Fisherman Project is financed by the ACP-EU Cooperation Programme in Higher Education (EDULINK), a programme of the ACP Group of States, with the financial support of the European Union www.fisherman-project.eu [email protected] Índice Ester Boldrini, Teresa C. Borges, Eulalie Ranaivoson & José L. Sánchez Lizaso The FisherMan project: Capacity building for sustainable Fisheries Management in the Southwest Indian Ocean................................................................................5 Daniel Pauly The fisheries in the South-Western Indian Ocean, with emphasis on reconstructed catches...............................13 José L. Sánchez Lizaso Closed areas for fisheries management: How much is enough?..............................................................41 Riambatosoa Rakotondrazafy Andriamampandry MIHARI: Networking coastal communities to manage Madagascar’s small-scale fisheries sustainably.................... 53 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data.............................................................................................69 Índice Torleiv Bilstad, Bjørnung Jensen, Martin Toft & Evgenia Protasova Petroleum production in symbiosis with fisheries? The norwegian experience.....................................................105 Teresa C. Borges, Patricia Calixto & João Sendão The common octopus fishery in South Portugal: a new shelter-pot.....................................................................130 Rafik Nouaili, Carlos Montero-Castaño & José Luis Sánchez-Lizaso Environmental sustainability analysis of the clam (Ruditapes decussatus, Linaeus 1758) fishery in Zaboussa production area (southeastern Tunisia) using the MSC fisheries standard....................................................155 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar.................................................................183 Bernardo Basurco, Ramón Franquesa & José L. Sánchez Lizaso International Master programme on Sustainable Fisheries Management............................................................236 DOI: 10.14198/MDTRRA2015.ESP.01 The FisherMan project: Capacity building for sustainable Fisheries Management in the Southwest Indian Ocean Ester Boldrini1, Teresa C. Borges2, Eulalie Ranaivoson3 & José L. Sánchez Lizaso1 University of Alicante, Spain, email: [email protected] University of Algarve, Portugal 3 University of Toliara, Madagascar 1 2 Abstract The FisherMan project Capacity building for sustainable Fisheries Management in the Southwest Indian Ocean (SWIO) is co-financed by the European Commission through the ACP Edulink programme. FisherMan aims at supporting higher education institutions in the SWIO region to create new study programmes in sustainable fisheries management. This paper presents an overview of the project activities and describes ÍNDICE 5 Ester Boldrini, Teresa C. Borges, Eulalie Ranaivoson & José L. Sánchez Lizaso the 1st edition of the FisherMan Regional Conference celebrated during September 2015 in Madagascar whose main aim was to bring together regional and international fisheries experts, authorities, professionals, academics, policy makers and other involved and interested in the Fishery sector, to exchange ideas and to promote an effective collaboration in the South-Western Indian Ocean and increase fishery management education at higher education level. Résumé Le projet FisherMan - Renforcement des capacités pour la gestion durable des pêcheries dans l’océan Indien du sudouest (SWIO) - est co-financé par la Commission Européenne à travers le programme ACP Edulink. FisherMan vise à soutenir les institutions d’éducation supérieur de la région SWIO dans la création de nouveaux programmes d’étude dans la gestion durable de pêcheries. Ce papier présente une vue d’ensemble des activités du projet et décrit la première édition de la Conférence Régionale FisherMan qui a eu lieu en septembre 2015 au Madagascar avec comme but principal de rassembler des experts régionaux et internationaux en pêcheries, des autorités, professionnels, professeurs, chercheurs, décideurs politiques et autres impliqués et intéressés par le secteur de la pêche, pour échanger des idées et ÍNDICE 6 The FisherMan project: Capacity building for sustainable Fisheries Management in the Southwest Indian Ocean promouvoir une collaboration efficace dans l’océan Indien su sud-ouest et augmenter l’éducation en gestion de pêcheries au niveau de l’éducation supérieur. Introduction C urrent coastal and marine resources in South-Western Indian Ocean (SWIO) region are under increasing human and industrial pressure. The continued decline of these resources is due to poorly coordinated and unplanned resources exploitation. At the same time, the importance of marine fisheries to the national economies and food security of Madagascar, Mozambique, Tanzania, Comoros Islands and Republic of Seychelles is increasing. Given the present context, effective management of resources to achieve ecological and economic sustainability is becoming crucial and the challenge we are facing now consists in providing a cadre of well-trained and well-equipped practitioners and professionals in sustainable fisheries management. The project Having in mind the above-mentioned context, the general objective of the FISHERMAN project is to support the SWIO region universities to prepare a new generation of skilled pro- ÍNDICE 7 Ester Boldrini, Teresa C. Borges, Eulalie Ranaivoson & José L. Sánchez Lizaso fessionals for sustainable fisheries management in the region. Five universities from five countries in the region are working together on the project (Comoros, Madagascar, Mozambique, Seychelles and Tanzania) with the support of two universities from two European countries (Spain –project coordinator– and Portugal). The project addresses both institutional capacity building and improvement of academic quality and relevance in the region, leading to: –– Enhanced contribution to national and regional policies on cooperation in higher education on fisheries management studies –– Increased inter-institutional networking between higher education Institution of SWIO and EU, including institutions offering teacher training, degrees and diplomas contributing to regional solutions to teacher shortages –– Upgraded qualifications of academic staff of Higher Education Institution of SWIO –– Improved institutional frameworks to pursue academic programmes and academic excellence in partner universities –– Increased mobility of postgraduate students and teaching staff through the provision of joint programmes ÍNDICE 8 The FisherMan project: Capacity building for sustainable Fisheries Management in the Southwest Indian Ocean –– Graduates with the skills corresponding to those required in the national and regional labour markets. The FISHERMAN consortium is composed by 7 main institutions that are: University of Alicante, Spain (project coordinator); University of Algarve, Portugal; University of Seychelles, Seychelles; University of Toliara, Madagascar; University of Comoros, Comoros; University of Dar es Salaam, Tanzania and University of Eduardo Mondlane, Mozambique. In addition with this, we count with the participation of two associate partners: the Southwest Indian Ocean Fisheries Commission and the Indian Ocean Tuna Commission. Project objectives and expected results The main objective of the FisherMan project is to support SWIO region universities to prepare new generation of skilled professionals for a sustainable fisheries management in the region. This will be achieved by means of developing and delivering a study program (master or specialisation) with a regional dimension, aimed at building competences in sustainable fisheries management at SWIO region universities. The main beneficiaries of the action will be teaching staff, researchers, students and administrators, all interested or inÍNDICE 9 Ester Boldrini, Teresa C. Borges, Eulalie Ranaivoson & José L. Sánchez Lizaso volved in the fisheries subject. They will benefit from specialized training sessions in fisheries and also other transversal topics such as educational quality assurance. Regional conference In the framework of the FisherMan project, two Regional Conferences have been foreseen. The first one took place on the 10-11th September 2015 in the city of Mahajanga, Madagascar, with the theme Sustainable Fisheries in the South-Western Indian Ocean: the importance of the Education, Management and Governance. With a format of two days composed by presentations, discussions and a final Round Table on the importance of integrating fisheries management in higher education, this conference brought together more than 100 regional and international Marine Resources professionals, fisheries and higher education authorities, academics, policy makers, activists, politicians and others involved and interested in the Fishery sector in the region. The main objectives of the Regional Conference were to enhance the understanding of sustainable ocean resources governance, its management and use in the region by critically assessing the agenda for reform; to discuss the pres- ÍNDICE 10 The FisherMan project: Capacity building for sustainable Fisheries Management in the Southwest Indian Ocean ent situation in the Region about Fisheries Management and Fisheries Education and to present the FisherMan project and its developments. The conference programme and summary of contributions may be found at http://www.fisherman-project.eu/content/ conference-outputs During the days of communication, discussion and exchange of practices, the conference showed the importance of fisheries resources as a source of food and wealth in the SWIO region. Management experiences that ensure the sustainable exploitation of these resources were presented, since, as in the rest of the world, these resources are threatened by overexploitation and use of destructive fishing gear both for resources and habitats. Therefore, it is important to control fishing effort, to eliminate destructive fishing techniques, to advance in co-management, with the creation of marine protected areas. At the same time, this would ensure fairness in the distribution of wealth generated. For all this, building the capacities of multidisciplinary training of technicians who can develop sustainable fisheries management is crucial. The universities in the region should have a prominent role in the training of these professionals who will join the government, NGOs or the private sector. ÍNDICE 11 Ester Boldrini, Teresa C. Borges, Eulalie Ranaivoson & José L. Sánchez Lizaso In this special number of the Mediterranea Journal an extended version of some selected papers presented to the conference is included. Acknowledgements FISHERMAN is a project within the EDULINK Programme: ACP-EU Higher Education Cooperation funded by the European Union and implemented by the ACP Secretariat. Special thanks to the Institut Halieutique et des Sciences Marines of the University of Toliara, to the Ministre de l’Enseignement Supérieur et de la Recherche Scientifique and to the Ministre des Ressources Halieutiques et de la Pêche for their support to the 1st FISHERMAN Conference. ÍNDICE 12 DOI: 10.14198/MDTRRA2015.ESP.02 The fisheries in the South-Western Indian Ocean, with emphasis on reconstructed catches Daniel Pauly Sea Around Us, University of British Columbia, Vancouver, Canada Email: [email protected] Abstract Following a brief description of the evolution of marine fisheries since the Second World War, the major trends in the domestic and foreign fisheries in the Exclusive Economic Zones (EEZs) of the Comoros, Madagascar, Mozambique, the Seychelles and Tanzania are reviewed, with emphasis on the actual (‘reconstructed’) catches (as opposed to officially reported catches) of the domestic fisheries for the 61 year period from 1950 to 2010. The discrepancies between these two catch types have policy implication which leads to a discussion of what the governance of these fisheries should emphasize, besides ÍNDICE 13 Daniel Pauly having to be ecosystem-based, and increasingly account for demographic pressure and climate change. The resource managers to be trained for facing these challenges will have to have to be versatile, conservation-orientated, and adept at making use of generic online resources that allow bypassing time-consuming and costly local replications. Résumé Suite à une brève description de l’évolution de la pêche maritime depuis la Seconde Guerre mondiale, les principales tendances de la pêche intérieure et étrangère dans les zones économiques exclusives (ZEE) des Comores, Madagascar, le Mozambique, les Seychelles et la Tanzanie sont examinées, l’accent étant mis sur les captures (‘reconstruites’) réelles (par rapport à les captures déclarées officiellement) des pêches intérieures pour la période de 61 ans allant de 1950 à 2010. Ces divergences ont une implication politique qui conduit à une discussion sur ce que la gouvernance de ces pêcheries devrait souligner, en plus d’avoir à être fondée sur les écosystèmes, et de plus en plus tenir compte de la pression démographique et le changement climatique. Les gestionnaires des ressources formés pour faire face à ces défis devront être polyvalents, orientées vers la conservation et doués pour utiliser des ressources en ligne génériques perÍNDICE 14 The fisheries in the South-Western Indian Ocean, with emphasis on reconstructed catches mettant de contourner les reproductions locales coûteuses en temps et laborieuses. Introduction T he period following the Second World War saw a massive increase in fishing effort, particularly in the 1960s. However, crashes due to this overfishing began to be reflected in global catch trends in the 1970s, and intensified in the 1980s and 1990s. In response, the industrialized countries of the Northern Hemisphere (where overfishing-induced catch declines appeared first) moved their effort offshore (Kleisner et al. 2014), toward deeper waters (Morato et al. 2006), and toward the south, i.e., to the coasts off developing countries, and beyond into the southern hemisphere, all the way to Antarctica (Swartz et al. 2010a). Now, in the second decade of the 21st century, the global expansion of fisheries is completed, and the real global catch, which is much higher than officially reported, peaked in the mid 1990s and is now rapidly declining (see www.seaaroundus.org). In parallel, the collateral damage to marine ecosystems and biodiversity continues to increase. Several factors act to prevent the public in developed countries from realizing the depth of the crisis fisheries are in, notably the increased imports by developed countries, of seafood from developing countries (Swartz et al. ÍNDICE 15 Daniel Pauly Figure 1. Map of the Southwestern Indian Ocean, emphasizing the Exclusive Economic Zones of the Comoros, Madagascar, Mozambique, the Seychelles and Tanzania. ÍNDICE 16 The fisheries in the South-Western Indian Ocean, with emphasis on reconstructed catches 2010b). Also, the misleading perception that aquaculture can substitute for declining catches is widespread. In some countries, notably the US, stocks are being rebuild, but elsewhere, the failure to respond creatively to these clear trends bodes ill for the next decades. Indeed, the projected effects of global warming (productivity declines in the tropics, widespread disruptions at high latitudes; Cheung et al. 2010), which have already began to be felt in the last decades (Cheung et al 2013), will strongly impact fisheries and global seafood supply. The area of the South-Western Indian Ocean covered by the FisherMan Project (http://www.fisherman-project.eu/) covers the Exclusive Economic Zones (EEZs) of the Comoros, Madagascar, Mozambique, the Seychelles and Tanzania (Figure 1). In the following, a brief account of major domestic and foreign marine fisheries from 1950 to 2010 is given for each of these countries, capped by a general discussion of the governance of these fisheries, and of the research that is required for their management, along with some thought on the university education required by fisheries managers and similar personnel in the region. ÍNDICE 17 Daniel Pauly Material and Methods The fisheries catch reconstructions whose results are presented below were based on the ideas (in Pauly 1998) that (i) there is no fishery with ‘no data’, because fisheries, as social activities, throw a ‘shadow’ unto other sectors of the economy in which they are embedded, and (ii) it is always worse to put a value of ‘zero’ (or ‘no data’, which will be translated into a zero) for the catch of a poorly documented fishery than to estimate its catch, even roughly, because subsequent users of one’s statistics will interpret the zeroes as ‘no catches’, rather than ‘catches unknown’. This was operationalized by Zeller et al. (2007) as a six-step approach, as follows: 1.Identification, sourcing and comparison of baseline catch times series, i.e., a) FAO (or other international reporting entities) reported landings data by FAO statistical areas, taxon and year; and b) national data series by area, taxon and year; 2.Identification of sectors (e.g. subsistence, recreational), time periods, species, gears etc., not covered by (1), i.e., missing data components. This is conducted via extensive literature searches and in collaboration with local experts; ÍNDICE 18 The fisheries in the South-Western Indian Ocean, with emphasis on reconstructed catches 3.Sourcing of available alternative information on missing data identified in (2), via extensive searches of the literature (peer-reviewed and grey, both online and in hard copies) and in consultations with local experts. Information sources include social science studies (anthropology, economics, etc.), reports, data sets and expert knowledge; 4.Development of data ‘anchor points’ in time for each missing data item, and expansion of anchor point data to country-wide catch estimates; 5.Interpolation for time periods between data anchor points, either linearly or assumption-based for commercial fisheries, and generally via per capita (or per fisher) catch rates for non-commercial sectors; and 6.Estimation of total catch times series by combining the reported catches in (1) and the interpolated, country-wide expanded missing data series in (5). There is obviously more to reconstruction than this (notably for making uncertainties explicit, see, e.g., Zeller et al. 2014), but this summary should suffice for the five country accounts presented below. Le Manach and Pauly (2015) should be consulted for reconstructions covering the entire western Indian Ocean region, and Pauly and Zeller (2016; sea also ÍNDICE 19 Daniel Pauly www.seaaroundus.org) for reconstructions covering all the EEZs of the world. Results Comoros (based on Doherty et al. 2015a) The Union of the Comoros is an archipelago in the Western Indian Ocean, composed of three main islands, which have a combined land area of 1,670 km2 and an EEZ of 165,000 km2 (Figure 1). The domestic fisheries consist of a small-scale boat fleet of pirogues and motor boats operated by men, and shore-based fishing by women. Small-scale catches from the artisanal and subsistence sectors compose the bulk of the domestic in the Comoros’ EEZ (Figure 2A). Doherty et al. (2015a), based on these and other reports, reconstructed domestic catches of 1,200 t∙year-1 in the early 1950s, which increased to 10,000 t by the mid-1980s, and around 18,500 t∙year-1 from 2005 to 2010. The rapid increase in later years was due to the increasing number of motorized vessels, more efficient gear, and the use of fish aggregating devices (FADs) offshore. Overall, reconstructed catches are 1.4 times the data reported by FAO for the Comoros; the discrepancy is mainly due to an increase in catches since 1995, which is not reflected in the FAO data. Figure 2B shows that while do- ÍNDICE 20 The fisheries in the South-Western Indian Ocean, with emphasis on reconstructed catches mestic catches dominate the total removals, foreign fishing by Spain, France and Japan also occurs. The reconstructed catch consists primarily of skipjack tuna (Katsuwonus pelamis) and yellowfin (Thunnus albacares) offshore, and sardinellas (Sardinella spp.) and anchovies (Family Engraulidae) closer inshore (Figure 2C). Figure 2. Domestic and foreign catches taken in the EEZ of Comoros. A) by sector; B): by fishing country (note that foreign catches are very uncertain); C): by taxon. ÍNDICE 21 Daniel Pauly Madagascar (adapted from Le Manach et al. 2011, 2012) Madagascar, which has a land area of 587,000 km2 and an EEZ of 1.2 million km2 (Figure 1), is one of the world’s poorest developing countries, and its people depend heavily on marine resources for their livelihood (Barnes-Mauthe et al. 2013). Exports of these resources and foreign fishing access agreements are important economically. In recent years, concerns have been voiced amongst local fishers and industry groups, yet knowledge of Malagasy fisheries remains poor (Le Manach et al. 2012). Unfortunately, fisheries legislations, management plans and foreign fishing access agreements are often decided on based on very incomplete data (Le Manach et al. 2012). As presented in Figure 3A, total catches allocated to Madagascar’s EEZ are dominated by the industrial sector, followed closely by the artisanal sector. The catch reconstruction of all Malagasy fisheries sectors performed by Le Manach et al. (2011) suggests that domestic catches increase from 15,000 t·year-1 in the early 1950s to 137,000 t·year-1 from 2000 to 2010. Overall, this was about twice as high as officially reported, due in part to the subsistence sector, which is missing in the national statistics. A large component of the allocated catches originate from domestic fisheries; however, varying catches by Spain, France ÍNDICE 22 The fisheries in the South-Western Indian Ocean, with emphasis on reconstructed catches and Yemen, among others, have been documented (Figure 3B). This catch consists mainly of halfbeaks (Family Hemiramphidae), skipjack tuna (Katsuwonus pelamis), Indian white prawn (Fenneropenaeus indicus) and grunts (Family Haemulidae; Figure 3C). Signs of stock decline have been observed, suggesting that the current fishing pressure is excessive. Figure 3. Domestic and foreign catches taken in the EEZ of Madagascar. A) by sector; B): by fishing country (note that foreign catches are very uncertain); C): by taxon. ÍNDICE 23 Daniel Pauly Mozambique (adapted from Jacquet at al. 2007, 2010) Mozambique stretches along the coast of East Africa, between South Africa and Tanzania (Figure 1), has an EEZ of 571,000 km2 with a shelf of 85,300 km2, and is relatively rich in marine resources (see contributions in Pauly 1992). However, Mozambique underreports its marine catches (Jacquet et al. 2010). Small-scale fisheries, including subsistence fishing by women, account for most marine fisheries landings within Mozambique’s EEZ (Figure 4A). Foreign fishing occurs, but is not prominent (Figure 4B). Doherty et al. (2015) reconstructed catches (including discards) between 55,000 and 64,000 t·year-1 in the 1950s, and which peaked at over 200,000 t∙year1 in the mid-1980s, but were affected by the war of independence from Portugal, followed by a long civil war. By the late 2000s, catches were between 120,000-130,000 t∙year-1. Between 1950-2010, the fishing sector is estimated to have caught 4.6 times the landings reported by FAO on behalf of Mozambique. However, since 2003, annual catches reported to FAO have increased due to substantial improvements in national data reporting systems, and the total reconstructed catches are only 1.6 times the statistics reported by FAO. Figure 4C, based on Doherty et al. (2015), summarizes the taxonomic composition of the catch, which includes her- ÍNDICE 24 The fisheries in the South-Western Indian Ocean, with emphasis on reconstructed catches rings, shads and sardines (Family Clupeidae) and anchovies (Engraulidae). Although globally Mozambique has a low (if increasing) per capita GDP, the country is demonstrating that this should not be a reason for inaccurate fisheries statistics. Hopefully, this example will be followed elsewhere. Figure 4. Domestic and foreign catches taken in the EEZ of Mozambique. A) by sector; B): by fishing country (note that foreign catches are very uncertain); C): by taxon. ÍNDICE 25 Daniel Pauly Seychelles (adapted from Le Manach et al. 2015) The Seychelles is an archipelago located north of Madagascar, composed of 115 islands; it has a land area of 459 km2 and an EEZ of 1.33 million km2 (Figure 1). With around 15% of the available formal jobs, the fisheries sector is the main pillar of the national economy, the second being tourism. The domestic fisheries sector is small-scale, with a fleet of small boats targeting demersal and small pelagics in and around the coral reefs (SFA 2014). Since the early 1990s, though, an expansion towards offshore waters has occurred, with a fleet of longliners targeting primarily swordfish. Total domestic catches were estimated to have increased from 3,100 t∙year-1 in the 1950s to around 20,000 t∙year-1 in the 2000s (of which around 5,000 t∙year-1 are artisanal, Le Manach et al. 2015), with reconstructed domestic catches being around 1.3 times the figures reported to FAO. Overall, catches within the EEZ are dominated by industrial fleets (Figure 5A), mostly foreign (Figure 5B). Due to the predominance of foreign industrial fleets, catches are dominated by large pelagics (Figure 5C). A large sector contributing to the national economy is foreign owned: the large fleets of Spanish purse seiners and Taiwanese and Japanese longliners are often Seychelles flagged and operate throughout the western Indian Ocean. A ÍNDICE 26 The fisheries in the South-Western Indian Ocean, with emphasis on reconstructed catches portion of their catch is landed in Victoria on Mahé (Figure 1), the largest tuna hub in the Indian Ocean, and processed at the national cannery. Figure 5. Domestic and foreign catches taken in the EEZ of the Seychelles. A) by sector B): by fishing country (note that foreign catches are very uncertain); C): by taxon. ÍNDICE 27 Daniel Pauly Tanzania (adapted from Bultel et al. 2015; Doherty et al. 2015b and Jacquet et al. 2007, 2010) Tanzania (Figure 1) has a shelf area of 19,000 km2 and an EEZ of 241,000 km2. The Tanzanian coastline is coastline dotted by numerous islands (Figure 1), of which Pemba and Zanzibar form the ‘Zanzibar Region’, previously separate, now joined with the mainland (‘Tanganyika’) into the United Republic of Tan-zan-ia. Until a few years ago, Zanzibar’s catches, although relatively large, were not included in landings reported by FAO on behalf of Tanzania. Also, the mainland catches were underestimated due to incomplete country-wide expansion of locally sampled catch data. Thus, a reconstruction of Tanzania catches was undertaken (Jacquet and Zeller 2007; Jacquet et al. 2010; updated by Bultel et al. 2015) which addressed these issues, and estimated domestic catches of 18,000 t∙year-1 in the early 1950s and 110,000 t in 2010. Small-scale fisheries, especially artisanal, dominate catches in this EEZ (Figure 6A), with little foreign fishing presently documented (Figure 6B). This highlights the often neglected role of artisanal and subsistence fisheries (see, e.g., Nakamura 2011), another reason why the reconstructed catches are 1.8 times the FAO catches for Tanzania, even after Zanzibar is taken into account. These catches were dominated ÍNDICE 28 The fisheries in the South-Western Indian Ocean, with emphasis on reconstructed catches by emperors (Family Lethrinidae), sardine (Sardinella spp.), shark and rays, jacks (Carangidae), rabbitfishes (Siganidae) and mackerels and tuna (Scombridae; Figure 6C). The number of taxa reported to FAO has increased in recent years, thus decreasing the amount of miscellaneous ‘marine fishes nei’, a positive development also noted in other countries of the region. Figure 6. Domestic and foreign catches taken in the EEZ of Tanzania. A) by sector; B): by fishing country (note that foreign catches are very uncertain); C): by taxon. ÍNDICE 29 Daniel Pauly Discussion For the period from 1950 to 2010, the reconstructed domestic catches for the Comoros, Madagascar, Mozambique, the Seychelles and Tanzania ranged from 1.3 (Seychelles) to 4.6 (Mozambique) times as much as the data reported by the FAO on behalf of these countries, with a median value of 1.8 (Tanzania). These discrepancies, which fortunately exhibit a declining trend, but which do not account for the catch of foreign fleets, are predominantly due to two sources of unreported catches: i. The discards of industrial fisheries, mainly from bottom trawling for penaeid shrimps; ii. The widespread neglect of small-scale fisheries, here artisanal and subsistence fisheries. Item (i) reflects a practice – the wholesale discarding of the perfectly edible fish that is caught along with targeted shrimps – that is wasteful and arguably immoral, and which ought to be banned in the South-western Indian Ocean region, whose countries – notably Madagascar – suffer from food insecurity. Even the European Parliament has now passed legislation to gradually ban discarding, following the example of Norway, where discarding was phased out starting in the mid-1980s. ÍNDICE 30 The fisheries in the South-Western Indian Ocean, with emphasis on reconstructed catches Item (ii) refers to a widespread phenomenon in developing countries, i.e., for politicians and fisheries managers to focus on industrial export fisheries – notably because they generate foreign exchange (and also, it must be said) opportunities for corruption – while paying scant attention, if any, to the artisanal and subsistence fisheries yielding the animal protein that rural people eat, and thus contribute to their food security in a way that export-orientated industrial fisheries cannot match (Pauly 2006). The Sea Around Us has recently completed the first pass of a global project devoted to help overcome this widespread policy bias against small scale fisheries, notably by ensuring that all national catch reconstruction, as here illustrated for five countries, disaggregate catch estimates by sector, with the catch of the small scale sectors (artisanal and subsistence, and recreational where possible) explicitly identified (see Pauly and Zeller 2016, and www.searoundus.org). I also believe, given that member countries of the Food and Agriculture Organization of the U.N. (FAO) must annually report their catch to FAO, that they should be asked to supply catches separately for large scale (industrial) and small-scale fisheries (Pauly and Charles 2015), as this would encourage the development of catch data recording systems that are less biased against small-scale fisheries. This would then serve as basis for a ÍNDICE 31 Daniel Pauly re-evaluation of the role of coastal small scale fisheries, which ought to be encouraged and privileged, e.g., when they competes with industrial vessels operating inshore (Pauly 2006). In contrast, the current emphasis of policy makers in the Western Indian Ocean region is to encourage the growth of offshore, export-orientated pelagic fisheries, i.e., to bank on fisheries resources whose catches are currently declining under an excessive multinational fishing pressure (Figure 7). Figure 7. Industrial landing of large pelagic fishes from the Indian Ocean, 1950-2010, showing a) the total annual reported landings by area; b) percentage landing by country; c) percentage landing by gear; and d) percentage landing per species. (The grey color in panels B, C and D refers to ‘Others’; source: Le Manach et al. 2014). ÍNDICE 32 The fisheries in the South-Western Indian Ocean, with emphasis on reconstructed catches Finally, the FisherMan project has, as one of its task, the development of (Msc.-level) courses/curricula for future fisheries managers in the South-Western Indian Ocean. During my nearly 40 year career in fisheries, as I taught fisheries science courses on five continents in four languages, and supervised over 50 Master and PhD students from and in a multitude of countries, I also noted that fisheries resources and marine biodiversity have declined across the board, as have terrestrial resources and biodiversity. These declines have sometimes been subtle (Pauly 1995) and often contested (see www.fishingdown.org), but they occurred nevertheless. From this, and from the global fisheries reconstruction project that the Sea Around Us just concluded, I offer two recommendations regarding the training of fisheries managers: My first recommendation is that a solid grounding in quantitative ecology and resource economics is needed for future fisheries managers, not only to understand how to optimally exploit marine resources, but to also understand the effects of relentless human population (and demand) growth on natural resources (see, e.g., Pauly 2006), combined with the effects of global warming on marine resource populations (Cheung et al. 2010, 2013). This requires that the cursus must focus on resource conservation, i.e., how to prevent the wholesale ÍNDICE 33 Daniel Pauly liquidation of all natural resources in the next few decades, especially in developing countries. This is a major issue for the 21st Century, which is not going to be solved by ritual invocations of “sustainable development”, and the ill-founded notion that aquaculture can replace fisheries. My second recommendation is that new courses for developing-country setting ought to be increasingly structured around the free, high quality resources that are available online, and which can replace costly books and foreign experts, and routine investigations. This ranges from Wikipedia, a unique multilingual encyclopedia, to domain-specific tools such as FishBase (www.fishbase.org), which can be not only used to teach ichthyology (via an online manual already tested in multiple course at several universities worldwide), but also used for fish identification, to document fish biodiversity, and to obtain estimates of parameters (growth, mortality, etc.) for use in stock assessments (e.g., Martell and Froese 2013) or ecosystem models (Christensen and Walters 2004). There is simply no more time for duplicative parameter estimations, especially when such estimations take the place of locally adapting and running resource optimization models. Indeed, I believe that the ability to access and use such online resources will increasingly define good managers. However, ÍNDICE 34 The fisheries in the South-Western Indian Ocean, with emphasis on reconstructed catches at the same time, we ought to abandon the notion that these resources managers should be government agents. Thus, the community of environmental non-government organizations (e-NGOs) have become in both developed and developing countries a major employer of fisheries, ecology and resources management graduates (especially at the Master level), a trend that is likely to intensify in the future, and which neither governments, not the private sector are likely to match. A cursus for the fisheries managers of the future will thus have to consider the requirements of e-NGOs, which emphasize the ability to communicate with laypeople, and to use scientific and other knowledge to solve practical problems. Acknowledgements This is a contribution of the Sea Around Us, a research initiative based at the University of British Columbia in Vancouver, Canada and funded by the Paul G. Allen Family Foundation. I thank the organizers of the FishMan Project, particularly Dr. Jose Luis Sanchez for the opportunity to give the keynote address and to participate in a panel discussion at the First FisherMan Regional Conference on “Sustainable Fisheries in the South-Western Indian Ocean: the Importance of Education, Management and Governance,” 10 & 11 September 2015, in ÍNDICE 35 Daniel Pauly Mahajanga, Madagascar, where the above material and ideas were original presented. References BARNES-MAUTHE M, OLESON KLL and ZAFINDRASILIVONONA B (2013). The total economic value of small-scale fisheries with a characterization of post-landing trends: An application in Madagascar with global relevance. Fisheries Research 147: 175-185. BULTEL E, DOHERTY B, HERMAN A, LE MANACH F and ZELLER D (2015). An Update of the Reconstructed Marine Fisheries Catches of Tanzania with Taxonomic Breakdown. pp. 151-161 In Le Manach F and Pauly D (eds.), Fisheries catch reconstructions in the Western Indian Ocean, 1950-2010. Fisheries Centre Research Reports 23(2). CHEUNG, W.W.L., R. WATSON and D. PAULY (2013). Signature of ocean warming in global fisheries catch. Nature 497: 365-368. CHEUNG, W.W.L., V.W.Y. LAM, J.L. SARMIENTO, K. KEARNEY, R. WATSON, D. ZELLER and D. PAULY. (2010). Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology 16: 24-35. CHRISTENSEN V. and WALTERS C.J. (2004) Ecopath with Ecosim: methods, capabilities and limitations. Ecological Modelling 172: 109-139. ÍNDICE 36 The fisheries in the South-Western Indian Ocean, with emphasis on reconstructed catches DOHERTY B, HAUZER M and LE MANACH F (2015a) Reconstructing Catches for the Union of the Comoros: Uniting Historical Sources of Catch Data for Ngazidja, Ndzuwani and Mwali from 19502010. p. 1-11 In Le Manach F and Pauly D (eds.), Fisheries catch reconstructions in the Western Indian Ocean, 1950-2010. Fisheries Centre Research Reports 23(2). DOHERTY B., MCBRIDE M.M., BRITO A.J., LE MANACH F., SOUSA L., CHAUCA I. and ZELLER D. (2015b). Marine Fisheries in Mozambique: Catches Updated to 2010 and Taxonomic Disaggregation, p. 67-82 In Le Manach F and Pauly D (eds.), Fisheries catch reconstructions in the Western Indian Ocean, 1950-2010. Fisheries Centre Research Reports 23(2). HAUZER M, DEARDEN P and MURRAY G (2013) The fisherwomen of Ngazidja island, Comoros: Fisheries livelihoods, impacts, and implications for management. Fisheries Research 140: 28-35. JACQUET J, BULTEL E, DOHERTY B, HERMAN A, LE MANACH F and ZELLER D (2016a) Tanzania. In Pauly D and Zeller D (eds.), Global Atlas of Marine Fisheries: Ecosystem Impacts and Analysis. Island Press, Washington, D.C. JACQUET J, FOX H, MOTTA H, NGUSARU A and ZELLER D (2010). Few data but many fish: marine small-scale fisheries catches for Mozambique and Tanzania. African Journal of Marine Science 32(2): 197-206. JACQUET JL and ZELLER D (2007) Putting the ‘United’ in the United Republic of Tanzania: reconstructing marine fisheries catches for ÍNDICE 37 Daniel Pauly Tanzania. pp. 49-60 In Zeller D and Pauly D (eds.), Reconstruction of marine fisheries catches for key countries and regions (19502005). Fisheries Centre Research Reports 15(2). KLEISNER, K., H. MANSOUR and D. PAULY. 2014. Region-based MTI: resolving geographic expansion in the Marine Trophic Index. Marine Ecology Progress Series, 512: 185-199. LE MANACH F, ANDRIAMAHEFAZAFY M, HARPER S, HARRIS A, HOSCH G, LANGE G-L, ZELLER D and SUMAILA UR (2012b) Who gets what? Developing a more equitable framework for EU fishing agreements. Marine Policy 38: 257-266. LE MANACH F, BACH P, BOISTOL L, ROBINSON J and PAULY D (2015) Artisanal fisheries in the world’s second largest tuna fishing ground - Reconstruction of the Seychelles’ marine fisheries catch, 1950-2010, p. 99-109 In Le Manach F and Pauly D (eds.), Fisheries catch reconstructions in the Western Indian Ocean, 1950-2010. Fisheries Centre Research Reports 23(2). LE MANACH, F., A. CISNEROS-MONTEMAYOR, A. LINDOP, A. PADILLA, L. SCHILLER, D. ZELLER and D. PAULY. (2014). Global catches of large pelagic fishes, with emphasis on tuna in the high seas p. 26-34 In: Pauly, D. and D. Zeller (eds.). So long, and thanks for all the fish: the Sea Around Us, 1999-2014 – a fifteen-year retrospective. A Sea Around Us Report to the Pew Charitable Trusts, University of British Columbia, Vancouver. ÍNDICE 38 The fisheries in the South-Western Indian Ocean, with emphasis on reconstructed catches LE MANACH F and PAULY D (Editors), 2015. Fisheries catch reconstructions in the Western Indian Ocean, 1950-2010. Fisheries Centre Research Reports 23(2), 161 p. LE MANACH F, GOUGH C, HARRIS A, HUMBER F, HARPER S and ZELLER D (2012) Unreported fishing, hungry people and political turmoil: The recipe for a food security crisis in Madagascar? Marine Policy 36: 218-225. LE MANACH F, GOUGH C, HUMBER F, HARPER S and ZELLER D (2011) Reconstruction of total marine fisheries catches for Madagascar (1950-2008). pp. 21-37 In Harper S and Zeller D (eds.), Fisheries catch reconstructions: Islands, Part II. Fisheries Centre Research Reports 19(4). MARTELL, S. and R. FROESE. (2013). A simple method for estimating MSY from catch and resilience. Fish and Fisheries 14(4): 504514. MORATO, T., R. WATSON, T.J. PITCHER and D. PAULY. 2006. Fishing down the deep. Fish and Fisheries 7(1): 24-34. NAKAMURA R (2011) Multi-ethnic-coexistence in Kilva Island, Tanzania. Shima - The International Journal of Research into Island Cultures 5(1): 44-68. PAULY, D. (Editor) (1992) Population dynamics of exploited fishes and crustaceans in Mozambique: contributions from a course on the “Use of Computers for Fisheries Research”, 23 February - 15 March 1988, Maputo, Mozambique. Revista de Investigação Pesqueira 21, 135 p. ÍNDICE 39 Daniel Pauly PAULY, D. (1998). Rationale for reconstructing catch time series. EC Fisheries Cooperation Bulletin 11, 4-10. PAULY, D. (1995). Anecdotes and the shifting baseline syndrome of fisheries. Trends in Ecology and Evolution 10(10): 430. PAULY, D. (2006). Major trends in small-scale marine fisheries, with emphasis on developing countries, and some implications for the social sciences. Maritime Studies (MAST) 4(2): 7-22. PAULY, D. and A. CHARLES. (2015). Counting on Small-Scale Fisheries. Letter to Science. 347: 242-243. PAULY, D. & ZELLER, D. (2016). Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 7:10244. doi: 10.1038/ncomms10244 SFA (2014) Annual report 2012. Seychelles Fishing Authority (SFA) Victoria (Seychelles). xiii + 75 p. SWARTZ, W., E. SALA, R. WATSON and D. PAULY. (2010a). The spatial expansion and ecological footprint of fisheries (1950 to present). PLoS ONE 5(12) e15143, 6 p. SWARTZ, W., U.R. SUMAILA, R. WATSON and D. PAULY. (2010b). Sourcing seafood for the three major markets: the EU, Japan and the USA. Marine Policy 34(6): 1366-1373. ZELLER, D., BOOTH, S., DAVIS, G. & PAULY, D. (2007). Re-estimation of small-scale fishery catches for U.S. flag-associated island areas in the western Pacific: the last 50 years. Fish. Bull. 105, 266277. ÍNDICE 40 DOI: 10.14198/MDTRRA2015.ESP.03 Closed areas for fisheries management: How much is enough? José L. Sánchez Lizaso University of Alicante. [email protected] Abstract Closed areas are becoming more and more important for fisheries management. Closed areas benefits for stock enhancement and biodiversity conservation are known but, in most countries, surface closed to fisheries is up to the moment too small. While it has been proposed to protect 10% of the marine environment for biodiversity objectives, several studies point that, for fisheries enhancement, it will be necessary to close at least 20% of marine environment to fisheries. Moreover in most countries, closed areas are biased to protect some particular habitat like shallow water reefs and it will be necessary that the protection expand to include all different ÍNDICE 41 José L. Sánchez Lizaso marine habitats. A crucial point to expand the network of marine protected areas is the financing sustainability of protected areas. Different ways to obtain the management budget for protected areas are discussed. Keywords: Closed areas, Fisheries Management, Stock enhancement, MPAs Résumé La fermeture de zones revêt une importance croissante dans le cadre de la gestion des activités de pêche. Les avantages que procurent les zones fermées pour l’amélioration des stocks et la préservation de la biodiversité sont connus, mais dans la plupart des cas, la superficie fermée par les pays reste à ce jour bien trop limitée. Bien qu’il ait été proposé de protéger 10 % de l’environnement marin en vue d’atteindre les objectifs liés à la biodiversité, diverses études indiquent que dans le cas de la gestion des activités de pêche, il sera nécessaire de procéder à des clôtures d’au moins 20 % de l’environnement marin. De plus, la majorité des pays définissent les zones de manière inégale pour protéger un type d’habitat spécifique tel que les récifs d’eau peu profonde ; il conviendra d’étendre la protection et inclure tous les différents habitats marins. La viabilité financière des zones protégées est un point essentiel ÍNDICE 42 Closed areas for fisheries management: How much is enough? à l’extension du réseau ou de la réserve marine. Différentes méthodes de collecte de fonds aux fins de maintenance des zones protégées sont en cours de discussion. Introduction C losed areas to fisheries, also called Marine Protected Areas (MPAs), are becoming more and more important for fisheries management. Although there are some differences between both terms (MPAs and closed areas) in this paper they have been considered with the same meaning: an area in which fisheries are completely or partially restricted. Benefits of closed areas for stock enhancement and biodiversity conservation are known (Gell & Roberts, 2002). The cessation or reduction of fishing mortality in marine protected areas (MPAs), promote an increase in abundance and mean size and age of previously exploited populations, that produce an increase in the offspring production and the spillover effect to open areas (Sánchez Lizaso et al 2000, Goñi et al 2008, López-Sanz et al 2011). Benefits for fisheries usually are observed with an increase in effort and catches in the vicinity of MPAs (Goñi et al 2008, Forcada et al 2009) changes in the opinion of fishermen with increased support to MPAs (Badalamendi et al 2000) or some socioeconomic indicators (Ramos et al 1992; Sánchez Lizaso & Giner, 2001) ÍNDICE 43 José L. Sánchez Lizaso Surface to be protected MPAs are effective for fishery enhancement and conservation objectives, but the relevant question for managers is the proportion of the area of distribution of each population that has to be protected. It is necessary to achieve equilibrium between biomass accumulation inside and biomass export to open areas (Sánchez Lizaso et al 2000). Surface to be protected is dependent on the biology of species. Although small protected areas have been effective for the protection of low mobility species, usually species with more mobility need larger closed areas (Ramos et al 2002, Halpern, 2003). One of the targets of the Convention on Biological Biodiversity is that, by 2020, at least 10% of coastal and marine areas, especially areas of particular importance for biodiversity and ecosystem services, are conserved through effectively and equitably managed, ecologically representative and well-connected systems of protected areas and other effective area-based conservation measures, and integrated into the wider landscape and seascape (https://www.cbd.int/sp/ targets/rationale/target-11/). Currently, about 209000 protected areas cover 15.4% of the planet’s terrestrial and inland water, and 3.4% of the oceans. 8.4% of all marine areas withÍNDICE 44 Closed areas for fisheries management: How much is enough? in national jurisdiction (0-200 nautical miles) are covered with protected areas, while only 0.25% of marine areas beyond national jurisdiction are protected (Juffe-Bignoli et al 2014). However 10% may not be enough and, for fisheries management, best results have been observed with closed areas that cover higher surface. In Philippines good results have been obtained with closed areas that cover 10-25% of fishing grounds (Rus & Alcala 1999). Moreover in some fisheries, it has been stablished as limit reference point, that Spawning Stock Biomass (SSB) or SSB per recruit (SSP/R) do not fall below some limit relative to the unfished level (Gabriel & Mace, 1999). One way to achieve this objective is to protect a significant proportion of the distribution area of each species (from 20 to 35%). On the other hand, a protected area that covers 65% of fishing grounds, increased CPUE but reduced the number of fishers and catches in Kenia (McClanahan & Kaunda-Arara, 1996). It also has to be considered that some part of protected areas may be on partial protection status with some fishing allowed inside or may be not effectively implemented (paper parks). It is important to note that the benefits for fisheries are related with the effective reduction in fishing mortality. In this sense, when we try to estimate surface effectively protected ÍNDICE 45 José L. Sánchez Lizaso we should consider only surface completely closed to fishing and effectively implemented. Partial protected areas should be weighted by the reduction of fishing mortality that they allow and paper parks should not be considered at all. Bias in habitats protected In many countries MPAs are biased to protect some particular habitat (i.e. coastal reefs). These habitats usually have higher biodiversity or are submitted to more treat. However, the protection of these habitats only benefits species that use these habitats as part of their life cycles and that usually are targeted by artisanal fisheries. But also species that live in low diversity habitats, like sandy/muddy bottoms, may benefit from spatial closures. In fact this low diversity habitats usually support the most important fisheries. The target of surfaces to be protected has to achieve all marine habitats, from coastal to open seas, to benefit all marine species. How to pay the cost of protection? If the target is to expand the network of closed areas to fisheries and enforce them effectively, the main constraint in many countries is the financial sustainability of protection (Balmford et al 2004). Inadequate funding is one of the primary reasons ÍNDICE 46 Closed areas for fisheries management: How much is enough? that many MPAs exist as paper parks. Once a MPA is legally established, sufficient funding is rarely allocated to fulfill its mission (Thur 2010). Some protected areas maybe supported by donors at the beginning but donors are unlikely, however, to sustain finances for MPA management in the long-term (McClanahan, 1999). In some countries like Spain, management costs are assumed exclusively by the public administration, which implies that, at this moment, there are more areas waiting the protection than allowable public funding for expanding the network of protected areas. Given the limitations on financing coastal protection and resource management, the use of alternative mechanisms to generate funding should be considered (Edwards, 2009). Since there are winners and losers of protection (Badalamendi et al 2000), one alternative is that winners pay the cost of protection. At least for coastal protected areas, revenues produced by user fees may contribute significantly to management cost. For example, MPAs in the Red Sea produce 20 times more revenues than management costs, and these revenues are used for maintain the whole network of national parks (including the terrestrial ones), some of them with low number of visitors (Samy et al 2011). It has also been observed that a significant percentage of visitors of some ma- ÍNDICE 47 José L. Sánchez Lizaso rine protected areas, will accept support financially through fees their management (Thur, 2010; Durgun, 2013). But, how to pay enforcement in high sea with no visitors? Enforcement of closed areas in the high sea may be easier and cheaper than coastal areas since usually fishing is done by larger vessels that use Vessel Monitoring System (VMS) and/ or Automatic Identification System (AIS) (Mazzini 2013). Conclusions –– MPAs are effective for protecting marine biodiversity and rebuilding stock biomass –– At least 20 to 30% of all marine habitats have to be closed to fisheries –– Sustainable financing is needed to ensure enforcement References BADALAMENTI, F., RAMOS, A.A., VOULTSIADOU, A., SÁNCHEZ LIZASO, J.L., D’ANNA, G., PIPITONE, C., MAS, J., RUIZ FERNANDEZ, J.A., WHITMARSH, D. and RIGGIO. S. (2000) Cultural and socio-economic impacts of Mediterranean marine protected areas. Environmental Conservation, 27, 110-125. ÍNDICE 48 Closed areas for fisheries management: How much is enough? BALMFORD, A., GRAVESTOCK, P., HOCKLEY, N., MCCLEAN, C. J., & ROBERTS, C.M. 2004. The worldwide costs of marine protected areas PNAS 101 (26): 9694-9697. BOHNSACK, J.A. 1990. The Potential of Marine Fishery Reserves for Reef Fish Management in the US Southern Atlantic. NOAA Technical Memo NMFS-SEFC-261. National Oceanic and Atmospheric Administration, Miami. DURGUN, D. 2013. Estimation of user fees as a co-financing source for two Spanish Mediterranean Marine Protected Areas. Master Thesis University of Alicante 49 pp. EDWARDS, P.E.T. 2009. Sustainable financing for ocean and coastal management in Jamaica: The potential for revenues from tourist user fees Marine Policy 33: 376-385. FORCADA A., VALLE C., BONHOMME P., CRIQUET G., CADIOU G., LENFANT P., SÁNCHEZ-LIZASO J. L. 2009. Effects of habitat on spillover from marine protected areas to artisanal fisheries. Marine Ecology Progress Series; 379: 197-211. GABRIEL, W.L. and MACE, P.M. 1999. A review of biological reference points in the context of the precautionary approach. Proceedings, 5th NMFS NSAW. NOAA Tech. Memo. NMFS-F/SPO-40:34:45 GELL, F.R. and C.M. ROBERTS. 2002. The Fishery Effects of Marine Reserves and Fishery Closures. WWF-US, 89 pp. GOÑI R., ADLERSTEIN, S., ALVAREZ-BERASTEGUI, D., A. FORCADA, O. REÑONES, G. CRIQUET, S. POLTI, G. CADIOU, ÍNDICE 49 José L. Sánchez Lizaso C. VALLE, P. LENFANT, P. BONHOMME, A. PÉREZ-RUZAFA, J. L. SÁNCHEZ-LIZASO, J. A. GARCÍA-CHARTON, G. BERNARD, V. STELZENMÜLLER, S. PLANES (2008) Spillover from six western Mediterranean marine protected areas: evidence from artisanal fisheries. Marine Ecology-Progress Series 366, 159-174. HALPERN, B.S. 2003. The impact of marine reserves: do reserves work and does reserve size matter? Ecological Applications, 13(1) Supplement: S117–S137. JUFFE-BIGNOLI, D., BURGESS, N.D., BINGHAM, H., BELLE, E.M.S., DE LIMA, M.G., DEGUIGNET, M., BERTZKY, B., MILAM, A.N., MARTINEZ-LOPEZ, J., LEWIS, E., EASSOM, A., WICANDER, S., GELDMANN, J., VAN SOESBERGEN, A., ARNELL, A.P., O’CONNOR, B., PARK, S., SHI, Y.N., DANKS, F.S., MACSHARRY, B., KINGSTON, N. (2014). Protected Planet Report 2014. UNEP-WCMC: Cambridge, UK. LÓPEZ-SANZ, À., STELZENMÜLLER, V., MAYNOU, F., SABATÉS, A. 2011 The influence of environmental characteristics on fish larvae spatial patterns related to a marine protected area: The Medes islands (NW Mediterranean). Estuarine, Coastal and Shelf Science 92: 521-533. MAZZINI, M. 2013; Análisis de la distribución del esfuerzo pesquero de la flota arrastrera en el área contigua a la Zona de Veda Permanente de la Zona Económica Exclusiva Argentina. Master Thesis University of Alicante 91 pp. ÍNDICE 50 Closed areas for fisheries management: How much is enough? MCCLANAHAN, T.R. and KAUNDA-ARARA, B. (1996) Fishery Recovery in a Coral-Reef Marine Park and Its Effect on the Adjacent Fishery. Conservation Biology 10, 1187-1199. MCCLANAHAN,TR. 1999. Is there a future for coral reef parks in poor tropical countries?. Coral Reefs; 18: 321-325. RAMOS ESPLÁ, A.A., SÁNCHEZ-LIZASO, J.L. and BAYLE, J. T. (1992) Impact biologique et économique de la Réserve marine de Tabarca (Alicante, Sud-Est de l’Espagne). Medpan News, Fr., 3: pp. 59- 66. RAMOS-ESPLÁ, A. A., VALLE-PÉREZ, C, BAYLE-SEMPERE, J.T Y SÁNCHEZ-LIZASO, J.L. (2004). Áreas Marinas Protegidas como herramientas de Gestión Pesquera en el Mediterráneo (Area COPEMED). Serie Informes y Estudios COPEMED nº 11. RUS G. R; ALCALA A. C. 1999. Management histories of Sumilon and Apo Marine Reserves, Philippines, and their influence on national marine resource policy Coral Reefs 18: 307-319. SAMY, M., SÁNCHEZ LIZASO, J. L., and FORCADA, A. (2011). Status of marine protected areas in Egypt. Animal Biodiversity and Conservation, 34(1), 165-177. SÁNCHEZ LIZASO, J.L. and GINER, C. (2001) Estudio comparativo de la flota artesanal de Tabarca. In Actas de las I jornadas internacionales sobre reservas marinas. Murcia 24 al 26 de marzo 1999. Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain. pp. 227-232. ÍNDICE 51 José L. Sánchez Lizaso SÁNCHEZ LIZASO, J.L., GOÑI, R., REÑONES, O., GARCÍACHARTÓN, J.A., GALZIN, R., BAYLE, J.T., SÁNCHEZ-JEREZ, P., PÉREZ-RUZAFA, A. y RAMOS, A.A. 2000. Density dependence in marine protected populations: A review. Environmental Conservation, 27: 114-158. THUR, S. M. 2010. User fees as sustainable financing mechanisms for marine protected areas: An application to the Bonaire National Marine Park Marine Policy 34: 63-69. ÍNDICE 52 DOI: 10.14198/MDTRRA2015.ESP.04 MIHARI: Networking coastal communities to manage Madagascar’s small-scale fisheries sustainably Riambatosoa Rakotondrazafy Andriamampandry MIHARI Network Lot II M 98 H Antsakaviro +261 34 20 340 23 [email protected]/ [email protected] Abstract The past decade has seen a groundswell of interest in community based marine conservation in Madagascar, with locally managed marine areas (LMMAs) being championed at the highest levels of government, and now covering over 12% of Madagascar’s seabed. Given Madagascar’s weak infrastructure, most of the country’s LMMA are located in remote areas, thereby presenting practical barriers to exchange and communication to discuss common challenges. The MIHARI ÍNDICE 53 Riambatosoa Rakotondrazafy Andriamampandry network was created as a means of linking up isolated coastal communities to allow community leaders to share ideas and successful models through peer-to-peer learning, as well as to represent the interests of small-scale fishers at a national level; in particular fisheries policy development. Network members include all LMMA communities and the non-governmental organizations that support them. Government authorities are regularly consulted in the network’s activities. While the network is still only three years old, and in the early stages of development, much progress has already made. For instance, annual learning exchanges between LMMA communities have taken place, culminating in the third national MIHARI forum in October 2015. The past year has also seen the launch of regional forums, of which one was organized in 2014 and four organized in 2015. Priorities going forward are to reinforce the structure and independence of the network, ensure the active participation of communities, and secure sustainable sources of funding for the network over the longterm. Keywords: LMMA, learning Network, community based natural resources management, small-scale-fisheries, partnerships, peer to peer learning exchange. ÍNDICE 54 MIHARI: Networking coastal communities to manage Madagascar’s small-scale fisheries sustainably Résumé Au cours de la dernière décennie, Madagascar a développé un intérêt croissant pour la conservation communautaire des ressources marines. Les Aires Marines Gérées Localement (AMGLs) sont, notamment, soutenues au plus haut niveau par le gouvernement, et couvrent désormais plus de 12% des fonds marins de Madagascar. Compte tenu de la faiblesse des infrastructures du pays, la plupart des AMGLs sont situées dans des régions isolées, rendant ainsi difficile les échanges et la communication relatifs aux défis communs qu’elles rencontrent. Le réseau MIHARI a été créé comme un moyen de connecter les communautés côtières isolées pour permettre à leur dirigeants de partager des idées et des modèles de réussite par l’apprentissage entre pairs, ainsi que pour représenter les intérêts des pêcheurs traditionnels au niveau national ; en particulier dans le cadre du développement de la politique des pêches. Les membres du réseau comprennent toutes les communautés AMGLs et les organisations non gouvernementales qui les soutiennent. Aussi, les autorités gouvernementales sont régulièrement consultées au sujet des activités du réseau. Des progrès significatifs ont déjà été réalisés, alors que le réseau ne date que de trois ans et qu’il n’est qu’aux premières ÍNDICE 55 Riambatosoa Rakotondrazafy Andriamampandry étapes de son développement. Par exemple, des réunions d’échanges annuels d’apprentissage entre les communautés AMGLs ont eu lieu avec, en octobre 2015, le troisième forum national MIHARI. Au cours des dernières années, des forums régionaux ont également vu le jour, dont l’un organisé en 2014 et quatre en 2015. Les futures priorités sont de renforcer la structure et l’indépendance du réseau, d’assurer la participation active des communautés et d’assurer des sources de financement durables pour le réseau. Mots clés : Mots clés : AMGL, réseau d’apprentissage, gestion communautaire des ressources naturelles, pêches à petite échelle, partenariats, échanges de connaissances entre pairs. Introduction M adagascar’s marine ecosystems harbour globally important marine biodiversity, and underpin the livelihoods and food security of more than 256,000 traditional fishers living along Madagascar’s 4,828 km coastline (ONAR, 2005). These so-called small-scale fishers include communities who are amongst the poorest people on earth, and many of the island’s coastal communities have no ÍNDICE 56 MIHARI: Networking coastal communities to manage Madagascar’s small-scale fisheries sustainably alternative to fishing for survival. Over recent decades these critical ecosystems have been decimated by overfishing, sedimentation and climate change. Declining catches, rapid population growth and a lack of livelihood alternatives have pushed traditional fishers into more intensive fishing; consequently, speeding the collapse of stocks and trapping them in a poverty cycle. Given the limited capacity of the national government for fisheries management, there is great urgency for practical efforts to support communities to manage and rebuild their fisheries at a local level. From 2003, Non-Governmental Organizations (NGO) working with fishing communities began developing the concept of Locally Managed Marine Areas (LMMAs) in Madagascar in response to community needs. LMMAs are areas of nearshore waters that are fully or largely managed by coastal communities, which are empowered to create and implement management rules. Due to their isolation, and lack of environmental management experience, communities in Madagascar often lack knowledge of processes available to them to secure rights for managing their resources effectively. The MIHARI network was created as a way of linking up isolated coastal communities to allow community leaders to share ideas and successful models through peer-to-peer learning, as well as to represent the interests of small-scale fishers in national policy development. ÍNDICE 57 Riambatosoa Rakotondrazafy Andriamampandry Evolution of community based management in Madagascar Madagascar’s first LMMA was introduced in 2005 and the initiative has since gained momentum among communities, government authorities and conservation organizations. These LMMAs are found throughout Madagascar and contain a rich diversity of marine and coastal environments from offshore coral archipelagos to coastal mangrove forests and a broad range of targeted fisheries and people dependent on them. There are now over 100 discrete community-based marine management efforts around Madagascar’s coasts, covering more than 12,000 km2 and over 12% of the island’s seabed. Madagascar’s LMMAs range in size from a few hectares to the vast 4,500 km2 Barren Isles protected area, the country’s largest protected area, and the largest community managed MPA in the entire Indian Ocean. In total, the marine area covered by LMMAs in Madagascar surpasses that of the national parks network (under management by Madagascar National Parks service) by around a third. The rapid expansion of local marine management was responsible for Madagascar meeting its 2003 Durban commitment to triple the coverage of its protected areas in 2014. ÍNDICE 58 MIHARI: Networking coastal communities to manage Madagascar’s small-scale fisheries sustainably LMMA in Madagascar use a range of legal mechanisms to secure local management rights: i. Co-managed protected areas under Madagascar’s Protected Area System (SAPM). This type of LMMA is classified as Category V or VI under the International Union for Conservation of Nature (IUCN). ii. Areas of coast and ocean governed by communities using traditional laws, called Dina. iii.Areas of mangrove forest where management rights have been formally transferred to community associations with legal contracts, through a legal framework called “Gestion Locale Securisée” (Gelose). These LMMAs unite resource users in the collaborative management of inshore resources, and employ a range of fisheries management tools including temporary closures for certain species, permanent no-take zones, bans on particular gears, alternative livelihoods initiatives, and mangrove forest restoration management. At a growing number of sites, these grassroots efforts have helped many communities secure local fisheries management rights and progress towards the successful management of economically important fisheries. ÍNDICE 59 Riambatosoa Rakotondrazafy Andriamampandry Figure 1: Map showing the location of LMMAs in Madagascar. LMMA communities facing challenges Despite the important progress made towards coastal protection and small-scale fisheries management, the sustainability of local efforts to safeguard marine biodiversity faces a number of challenges. Malagasy coastal communities are amongst the poorest on earth, depending on the exploitation of fisheries resources for income, livelihoods and food (World Bank, 2013). The poverty and low level of education of many ÍNDICE 60 MIHARI: Networking coastal communities to manage Madagascar’s small-scale fisheries sustainably isolated coastal communities leads to a low capacity and resource management experience, causing severe practical challenges in the development of community based conservation efforts. The voice of small-scale fishers is also rarely represented in high-level policy and decision-making. No legislative structure currently exists which pays homage to the LMMAs. The array of legal mechanisms which serve to develop management rights to local communities including Gelose, Dina and Protected Area are not inclined to the LMMA perspective, neither were they shaped with LMMAs in mind. Although there is a lack of legal framework that recognizes the existence of LMMA, the communities are really motivated towards resource management and Community based management fisheries is supported by the Malagasy Government. In addition to that, due to the chronic lack of infrastructure in Madagascar, most of LMMA are located in isolated areas, limiting their opportunities and market accessibilities to sell their catches. They have to rely on middlemen to collect their catches that are sold at a very low price. The isolation of the communities has also impacted their access to alternative livelihoods, which limits their activities to be based and focused on fisheries only. The remoteness of LMMA also creates limitations preventing exchange with other LMMA managers in learning successful models and best practices. ÍNDICE 61 Riambatosoa Rakotondrazafy Andriamampandry Networking communities through MIHARI Located in remote coastal areas, the majority of LMMA-implementing communities in Madagascar had limited opportunities for communication with other LMMA managers prior to the establishment of the MIHARI network. Inspired by the Pacific LMMA network (www.lmmanetwork.org), Madagascar’s first national LMMA forum was held in June 2012 bringing together community representatives from 18 LMMAs with the aim of addressing these problems through peer-to-peer learning and sharing of experiences. This event resulted in the creation of Madagascar’s national LMMA Network called: “MIHARI”, an acronym, which stands for “MItantana HArena an-dRanomasina avy eny Ifotony”. MIHARI is a platform bringing together all coastal communities involved with marine resource management and the organizations that support them. The network currently includes over 100 individual LMMAs with discrete management structures and rules supported by more than 10 partner institutions. The network structure is developing organically, but relies on the active engagement of the range of partners. A coordinator at the national level supports partner organizations to coordinate activities at the local level and communicate with communities. Since its creation, MIHARI has grown as a way of promoting the spread ÍNDICE 62 MIHARI: Networking coastal communities to manage Madagascar’s small-scale fisheries sustainably and successful development of LMMAs, and aims to address the systemic challenges faced by communities by facilitating and supporting collaboration amongst a range of actors, to foster the exchange of best practices, to increase the visibility and legitimacy of LMMA, to reinforce the voices of coastal communities, to strengthen the capacities of coastal sharing know-how and experiences between fishers, and to advocate for the interests of LMMA communities in national policy. The MIHARI Network’s achievements so far The core activities of the MIHARI network are to exchange visits between fishing communities and forums of LMMA managers. Fisher exchanges are a powerful tool in the spread of fisheries management practices and governance. Informal peer-to-peer experience sharing has been an integral part of the spread of community-led octopus fishery management measures along the southwest coast of Madagascar. We have also witnessed the role of these exchanges in building leadership and engagement in management efforts. Further to that, regular forums bring together community leaders representing LMMAs all around Madagascar’s coast. These forums are being held both at the regional and national level. They allow leaders to share their experiences, success ÍNDICE 63 Riambatosoa Rakotondrazafy Andriamampandry stories and challenges encountered; in addition, they foster a sense of community spirit and solidarity between LMMA communities. Three annual national forums have been organized so far, and this year, four regional forums were held grouping communities with a similar context. Ongoing communication tools through local radio are being developed to maintain regular communication and sharing of stories outside of these events. At the national policy level, the MIHARI network has contributed to new national fisheries policy and protected area policy representing the interests of small-scale fishers. The network is also working with Government ministries to develop legislation that reinforces the legal status of LMMAs. Through regular consultation with LMMA implementing communities network partners now have a better understanding of the challenges they face and the capacity gaps and support they need, and the network is commissioning specialist training in priority areas for community leaders. National ambitions for rights-based fisheries management At the 2014 World Parks Congress in Australia, Madagascar’s President Hery Rajaonarimampianina committed to tri- ÍNDICE 64 MIHARI: Networking coastal communities to manage Madagascar’s small-scale fisheries sustainably ple the total coverage of marine protected areas, providing an unprecedented climate of national support for this growth in community-based management of small-scale fisheries. The island is also in the process of revising its legal code for community-based fisheries management to help protect and promote the rights of small-scale fishers to secure management authority over local fisheries resources. Other coastal states in the Indian Ocean region are now seeking to emulate MIHARI’s experience, with growing interest in the role LMMA networks can play in supporting locally led marine conservation efforts across the western Indian Ocean. Next steps for the MIHARI network The priorities for the MIHARI network in the next phases of its development are to continue to increase engagement and ownership of the network from community managers, while building the network’s capacity and sustainability in the long term. To do this, a strategy has been developed that includes: –– Building the MIHARI network’s presence in key regions through regional hubs that will be able to maintain momentum at a local level and facilitate coordination and communication. ÍNDICE 65 Riambatosoa Rakotondrazafy Andriamampandry –– Focusing on capacity building of community leaders in priority subjects such as: fishery management measures, engaging with the private sector, governance and leadership; and using regional hubs to extend this support to sites with less support from technical partners. –– Reinforcing the structure and sustainability of the network by increasing community ownership, independent fundraising and raising the profile at the national level. Conclusion While top down management measures have often failed to bring about positive engagement from communities; Madagascar’s rapid expansion of community-led marine management efforts over the last decade has been driven in large part by community exchanges and dialogue, facilitated by supporting partner organizations. The surge in locally-led marine management seen in Madagascar over the past decade has demonstrated the enormous value of community exchanges and networking in building capacity and solidarity for local fisheries management among community groups from different regions, economies and fisheries. The ‘peer networking’ approach has shown its effectiveness in inspiring, advising and mentoring communities in the adoption of local fisheries man- ÍNDICE 66 MIHARI: Networking coastal communities to manage Madagascar’s small-scale fisheries sustainably agement efforts, both in Madagascar and further afield. As the civil society network representing the interests of LMMA communities, the MIHARI network’s experiences are providing invaluable input in helping shape ongoing national efforts to safeguard the rights of small-scale fishers. Madagascar’s evolving LMMA network provides critical learning in the role that a nascent national network can play in supporting and championing the needs of marginalized coastal populations in Madagascar’s unusual context: a large, populous, highly biodiverse country facing so many entrenched economic, environmental, infrastructural and governance challenges. Its experiences help highlight the degree to which a small and largely informal civil society network – with no official national mandate – can succeed in advocating for community-based marine and fisheries management, specifically through its progress in influencing and shaping the Government’s stated commitment to act decisively in reinforcing and expanding LMMAs in Madagascar. Acknowledgement We would like to thank the MacArthur Foundation who funded the MIHARI Network for the year 2015. We would also like to thank all members of the Network, namely LMMA communi- ÍNDICE 67 Riambatosoa Rakotondrazafy Andriamampandry ties and the supporting organizations that contributed to the development and success of the Network. The authors also acknowledge the input of the Editors that helped improve the manuscript. References BARNES-MAUTHE, M., OLESON, K. L., & ZAFINDRASILIVONONA, B. (2013). The total economic value of small-scale fisheries with a characterization of post-landing trends: An application in Madagascar with global relevance. Fisheries Research, 147, pp.175-185. ONAR. (2005). Madagascar, Tulear fishing communities support project (PACP) appraisal report. Department of Agriculture and Rural Development for North, east and south regions WORLD BANK. (2013). Madagascar Emergency Food Security and Reconstruction Project. World Bank Report No: ICR2816. ÍNDICE 68 DOI: 10.14198/MDTRRA2015.ESP.05 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data Marcellin Roandrianasolo Tsihoboto1, Bemiasa John1, Fanazava Rijasoa2 Institut Halieutique et des Sciences Marines, Université de Toliara, Route du Port Mahavatse II – Toliara 601 – Madagascar 2 Centre de Surveillance de Pêche de Madagascar, Ministère dea la Pêche et des Ressources Halieutiques- Antananarivo 101-Madagascar 1 Abstract Potential fishing zone can be identified from the information collected regarding the relationship between the environmental factors and distribution areas of the species. In this context, the effects of environmental parameters on the spatiotemporal dynamics of yellowfin tuna, Bigeye tuna, skipjack and albacore were analysed in the EEZ of Madagascar from ÍNDICE 69 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa 2005 to 2013 using a modelling approach between remote sensed environment and monthly catch data. The result of this analysis showed that (1) there is a positive relationship between the catches data and environmental parameters, (2) the sea surface temperature (SST) and chlorophyll-a are the main parameters that influence the distributions, (3) the most productive areas are located in the northwest and east central part of the EEZ and (4) these areas are already operational and well known by tuna fishermen. Finally, for the initiative to an optimal resource management, spatial distribution predictive maps of each studied species were produced. The limit of these results and suggestions are discussed. Keywords: Madagascar, environmental parameters, dynamic, tropical tuna, remote sensing, modelling Resume Titre : Analyse des effets des paramètres environnementaux sur les dynamiques spatiotemporelles des thons tropicaux dans la ZEE Malagasy : couplage télédétection et données de captures L’identification d’une zone potentielle de pêche peut être obtenue à partir des informations sur les relations entre les facteurs de l’environnement et les aires de répartition d’une es- ÍNDICE 70 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data pèce. Dans ce contexte, les effets des paramètres environnementaux sur les dynamiques spatiotemporelles du thon albacore, Patudo, Listao et germon ont été analysés dans la ZEE de Madagascar entre 2005 et 2013 à l’aide d’une approche de modélisation entre les données mensuelles de captures et des images satellites. L’analyse de ces données a montré que (1) il existe une corrélation entre la distribution des captures et les paramètres environnementaux, (2) la température de surface de la mer (TSM) et la chlorophylle-a sont les principaux paramètres qui influence les distributions des thons, (3) les zones les plus productives se situent dans la partie Nord-Ouest et Centre Est de la ZEE et que (4) ces zones sont déjà opérationnelles et bien connues par les thoniers. Enfin, dans l’initiative d’une gestion optimale des ressources, des cartes prédictives de la distribution spatiale de chaque espèce étudiée ont été réalisées. Les limites de ces résultats et les mesures à prendre sont discutées. Mots-clés : Madagascar, paramètres environnementaux, dynamique, thons tropicaux, télédétection, modélisation. Introduction T una fishes are among the most valuable of the Indian Ocean’s fishery resources. This fishery has been practiced by coastal populations since millennia. Since the ÍNDICE 71 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa 1950s, tuna catches have been increasing, but the most important catches have been noticed during the past thirty years (IOTC, 2015). Report from IOTC relates that in 1980, the total catch of tuna (and related species) from the Indian Ocean was just under 350,000 tonnes. In 2006, catches peaked at over 1.7 million tonnes. That was an increase of 390%, or an average annual growth rate of 6.3%, sustained over 26 years. The same report noticed that total catches have declined since 2006, largely due to external factors including the world economic crisis and the Somali pirate situation. Between 20082012 the average annual catch of tuna (and related species) in the Indian Ocean was just over 1.5 million tonnes. Almost 1.1 million tonnes (71%) of this came from the western and central Indian Ocean. In 2006, for whole the western and central Indian Ocean, the recorded total catches of tuna, seerfish and billfish increased to a maximum of almost 1.37 million tonnes. The recorded catch in 2012 was 1.16 million tonnes. As for the catch weight, the main species caught are skipjack and yellowfin tuna (IOTC, 2015). Although landed in smaller quantities, bigeye, albacore and particularly southern bluefin tuna are highly prized because of their higher unit value. Within Madagsacr Exclusive Economic Zone (1 1410 000 km2), tuna fishing is one of the most important of the twelve ÍNDICE 72 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data main fisheries identified for sea fishing (MPRH, 2012). Tuna production is estimated at 10 000 tonnes per year (Soumy, 2004). Most of the catches are given by the foreign vessels (mainly from the EU) which participate in this activity in the framework of international aggrements. Catch data analysis from various sources indicates that the worldwide landings of tuna have doubled in each decade since 1950 and exceeded 2 million mt per year in 1980s. Recent report (Wesley, 1991) noted that increases in catches of skipjack and yellowfin tuna in the Indian Ocean have been particularly great since 1982. However, the system for collecting statistics on fisheries other than foreign industrial tuna fishing is deficient or non-existent. This situation could lead to the collapse of the tuna stocks in the region. In addition to these, the accelerated growth of the human population on this planet is accompanied by an increasingly strong pressure on natural resources, including fishery resources. Many fisheries are already overexploited and only allow catches less than those they would manage (Fonteneau, 1997). As a result of this deficiency in the management of fisheries resources, many species catches could decrease further in the future; tunas that pass during their migration in Malagasy water are no exception. ÍNDICE 73 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa Thirty government officials are involved in the management of the exploitation of tuna in Madagascar but the imbalance in the operation can be observed (Ralison and Minten, 2003) because of technical difficulties, incompetence in the field and the inability of the national tuna fishing to exploit optimally these resources. At the current stage of research, the problem is contained in the following question: Is it possible to discern a preferentially areas of tunas by using easily measurable environmental parameters (Marsac, 1989)? Several studies on tuna fishing have been carried out in the western Indian area, particularly for yellowfin tuna (eg. Marsac, 1985; 1986; 1987-a and b; 1988; 1989; 1990; 1991; 1995), but few are treating the biological aspects linked to environmental parameter variability. Marsac (1987-a, b, c; 1988; 1990); Nishida (1995) and Ianelli (1995) started using tuna catch data to analyze the relationship between tuna fishing distribution areas and environmental conditions. Up to now, no investigations have been carried out within the Madagascar EEZ and dealing the subject. Being given that the actual areas of distribution of tuna industrial fishing fleets within the Madagascar EEZ are mainly concentrated in the North West and east coast, probable new tuna potential fishing zones (PFZ) exists in the remaining zones around the island. There ÍNDICE 74 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data is a need to investigate these new PFZ in order to increase and sustain the income generated by tuna industrial fishing activities. This paper describes the methodology how to identify new PFZ. Catch data from tuna industrial fishing will be coupled with environmental parameters (SST, chlorophyll-a) to establish a cartographic description of the spatial and temporal distribution of four commercial tuna species (Skipjack, Yellowfin, Bigeye, Albacore) in the EEZ Madagascar in order to identify new potential fishing zones, which may contribute to the optimal management of these resources. Material and methods Tunas distribution is not uniform in time and space (Berges et al., 1989). The abundance of food and temperature are cited among the main factors. As migrators and predators, tunas have no boundaries, following the favourable places for their survival. Data Sources Catch data The catch data used in this study are from tuna fishing trips between 2005 and 2013 in the Exclusive Economic Zone of Madagascar of yellowfin tuna (Thunnus albacares), bigeye ÍNDICE 75 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa tuna (Thunnus obesus), albacore tuna (Thunnus alalunga) and skipjack (Katsuwonus pelamis). They were provided by the Madagascar Fishing Monitoring Center that collects them from the ships logbooks or “logbooks”. In general, when seated is made, the ship’s captain systematically note in the logbook the geographical position of the vessel (longitude, latitude in degree-minute), the date of the catch, the name of the species caught (yellowfin, bigeye and skipjack), the category of catches by species and an estimate of the tonnage carried. The satellite data Environmental data used in this study are from MODIS Aqua Images. MODIS is an instrument of observation of the Earth on board the satellites Terra (EOS AM) and Aqua (EOS PM). MODIS images can be downloaded free of charge from NASA website - Goddard Earth Sciences Distributed Active Archive Center (DAAC) (Url 1) (1). MODIS collects Sea Surface Temperature (SST) and primary production (chlorophylls), which are available as pre-processed data: Level 1 (L1), 2 (L2) and 3 (L3) (Url 2) (2). But, Level 3 was the only database used during the study, with a spatial resolution of 4.86 km. It has sufficient resolution to describe the variability of the environment and to analyze the distribution of the catches. ÍNDICE 76 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data Processing of satellite images The images (L3) have a broad global coverage. Therefore, prior to processing the data, each study area was cropped out of the image source. Figure 1 shows the study area. All products have been processed using ArcGIS software especially through MEGT tool (Marine Geospatial Ecology Tools). The latter is a freeware, designed by the Marine Laboratory, Duke University (Beaufort, North California). It is avail- Figure 1: Study area, EEZ of Madagascar ÍNDICE 77 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa able via the web (Url 3) (3). ArcGIS can read images directly from MODIS and ensure the conversion of the metadata in HDF formats into Raster formats (Geo Referenced), and pixel values in degrees centigrade for temperature (°C) (SST) or mg/m3 for Chlorophyll-a and project images in the world geographic coordinate system WGS 84. Approach and model-analysis of the distribution of species Maxent was used to model the distribution of the species of interest (Philips et al., 2006). This program identifies the areas where tunas are most likely to occur, and the environmental conditions comparable to the tuna ecological niche. Maxent works with georeferenced data and detailed environmental factors data. The points of presence Presence points were extracted from catch data (see previous section). They were organized into Excel and then converted into modelling formats programs adapted to the species distribution. In this study, the data is imported as a CSV file (* .csv). They include following basic information: the taxonomic name of the species and the coordinates (longitude and latitude) from its point of presence. ÍNDICE 78 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data The environmental variables There are already databases presented as an approximate value of the ecological niche known as “climate envelope” that provide detailed climate information (based on the interpolation of data collected worldwide by climate measuring stations). They are available on the Bio oracle website (Url 4) (4). Among the parameters commonly used to describe the environment and distribution of tuna: SST, Chlorophylls, bathymetry, dissolved oxygen, salinity, and sea surface current were used in this study to define where to meet tuna species (Stretta and Dufour, 1973; Stretta et al., 1973; Stretta, 1977;). Results Seasonal variation in catches Tuna fishing in the Malagasy EEZ are manifested throughout the year from January to December. The Skipjack (Katsuwonus pelamis) is the species that dominates the catches of Malagasy tuna (Figure 2). For Bigeye, Skipjack and yellowfin tuna species, their total catches show that the highest abundances are found from March to May with a peak in April; however for albacore species, the peak is in November. Generally a small catch is observed on July and September. ÍNDICE 79 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa Figure 2: Seasonal variation of total catch from 2005 to 2013 Spatial distribution of catches The most important capture is observed from March to May, and focused in the northwestern part of the EEZ (Figure 3). Most of which consists of Skipjack (Katsuwonus pelamis) sometimes mixed with yellowfin (Thunnus albacares). The figure also shows that the capture of albacore is localized particularly in the east-central part of the EEZ from October to December. Finally, Bigeye tuna are found, in minimum ÍNDICE 80 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data ± Legend Total catch (ton) 13 Thunnus albacares Thunnus alalunga Katsuwonis pelamis Thunnus obesis EEZ Figure 3: Space distribution of total catch from 2005 to 2013 ÍNDICE 81 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa amount, at almost in the whole area of the EEZ throughout the year. Oceanographic data Sea Surface Temperature (SST ) distribution The distribution of sea surface temperature (SST) is not homogeneous throughout Madagascar’s EEZ, with a fairly pronounced seasonal variation (Figure 4). The west coast is warmer compared to the east coast and the north-western part is the warmest. Chlorophylls (CH-a) distribution The distribution of chlorophyll-a concentration also suggests a seasonal delineation. The west coast is more productive comparing to the east coast (Figure 5) and the important biomass is located in the south-western part. Sea surface temperature and chlorophylls values The value of the temperature ranges from 24 °C to 28 °C (Figure 6). From January to April, the temperature remains stable in the range of 28 °C. From May it falls largely to achieve its minimum in August (of approximately 24 °C). There is also a rise in the value of SST from September until December. ÍNDICE 82 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data Legend 19 .1 -2 4. 9 24 .9 -2 5. 8 25 .8 -2 6. 6 26 .6 -2 7. 4 27 .4 -2 8. 3 28 .3 -2 9. 0 29 .0 -2 9. 9 29 .9 -3 2. 6 Sea Surface Temperature (°C) ± Figure 4: Space distribution of Sea Surface Temperature, monthly mean from 2005 to 2013 ÍNDICE 83 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa 5 9 39 0. -0 36 0. -4 6 .3 3 .3 .3 -0 -0 3 33 0. 0. 7 .3 .2 -0 -0 27 24 0. 0. 1 4 .2 .2 -0 -0 18 21 0. 5 8 .1 -0 15 0. 0. 2 .1 0. 12 -0 .1 -0 0. 09 -0 06 0. 0. 04 -0 .0 .0 6 9 Legend Chlorophyll -a (mg/m^3) ± Figure 5: Space distribution of chlorophyll-a, monthly mean from 2005 to 2013 ÍNDICE 84 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data Figure 6: Seasonal variation of SST and Chlorophyll-a, monthly mean from 2005 à 2013 in the whole Malagasy EEZ An increase in the concentration of Chl-a was observed from January with a maximum in April. The average concentration was estimated between 0.15 to 0,17 mg/m3 (Figure 6). The concentration of Chl-a remains stable in May and goes back up to reach a second peak in July. Then, it is decreasing again to a value less than 0.12 mg/m3 from September to December. ÍNDICE 85 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa Modelling According to all variables used (Table 1), the most important parameters for the model are temperature distribution and chlorophyll content for the four models. The response curve for the temperature distribution (Figure 7) shows that the probability of presence of Thunnus obesis, Thunnus albacares and Katsuwonus pelamis are stronger for a temperature value between 28 °C and 29 °C. On the contrary, in these models, the probability of finding the three species decreased for temperature values below 27 °C. Percentage of contribution in the model (%) Environment variables Katsuwonus _pelamis Thunnus_ albacares Thunnus_ obesis Sea surface temperature Thunnus_ alalunga 83.7035* 56.7452* 63.5436* 7.0135 Chlorophyll-a 6.5256 24.9842* 11.5747 80.7812* Bathymetry 4.0028 5.6035 5.9243 2.9755 Sea surface current speed 3.6093 0.5023 14.0997 0.1473 Activate photosynthetic radiation 0.5291 9.4905 3.0015 0.8287 Salinity 1.3418 1.1228 0.8944 7.4989 Ultraviolet 0.2879 1.5514 0.806 0.7549 0 0 0.1558 0 Coral reef presence Table 1: Contribution percentages for each environment variable by Maxent. ÍNDICE 86 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data Figure 7: Response curve according to the SST These results are not the same for the model applied to Thunnus alalunga where the probability of presence is strongest to a temperature threshold between 26 °C to 26.5 °C. However, ÍNDICE 87 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa beyond this threshold the probability of finding the species remains relatively low (Figure 7). The important environmental variable after the temperature is the chlorophyll-a. For the three species: Katsuwonus pelamis, Thunnus obesis, Thunnus albacares the peak is observed at a concentration of 0.15 mg/m3 (Figure 8). Similar results were found for the model applied to Thunnus alalunga but with a lower value (0.08 mg /m3). Graphic models Models show that the probability of finding tuna is stronger in the West Coast than in the East Coast of Madagascar’s EEZ (Figure 9). In one side there are some particular groupings areas evaluated by the model, as favourable for the three species: Katsuwonus pelamis, Thunnus albacares, Thunnus obesis, located in the northwest of the EEZ. These areas correspond exactly to the geographic coordinates from 12.5 to 16.5° S and 42.5 to 48° E. It was also noted that areas with higher temperature are considered favourable for the distribution of these species. In the other side, the model applied to Thunnus alalunga (figure 9) showed that the most likely areas to find the species are in the east-central part of the EEZ, specifically from ÍNDICE 88 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data Figure 8: Response curve according to the chlorophyll-a ÍNDICE 89 ÍNDICE 3. 9 10 20 30 40 50 60 70 80 90 10 0 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa Figure 9: Predictive map modelling (MAXENT) 90 ± Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data 18 to 24° S and 48 to 53° E. These areas are located in the fishing zone of longliners. Discussion Temporal and spatial distribution of catches The monthly evolution of tuna catch showed two different periods (March-April-May and October-November-December). Each period presents a strong spatial homogeneity of catch from the same geographical area. This result is coherent with the work of the description of the seasonal nature of this fishery by several authors (Fonteneau, 1997; Randriambola, 2012; Ramanantsoa, 2013). The study shows that these two periods correspond to two different fishing strategies. From February to May, seiners mainly target banks Skipjack, Yellowfin and Bigeye tuna in the north-western part of the island. For longliners, even if they are operational in all seasons, the essential of their catch is located in the east-central part of the island from October to December, and the most targeted species are albacore. Tropical tuna species are migratory pelagic species, which can travel great distances for reasons of breeding and feeding (Saulnier, 2014). Between 1994 and 1995, studies on the reproductive biology of tuna in the Mozambique Channel ÍNDICE 91 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa carried out in Madagascar confirm that egg lying took place in Malagasy waters during the second quarter (Rajoharison, 1994.1995; Conand and Richards, 1995). According to the IRD (2003), reproduction of albacore, mainly takes place from November to February, in an area between 17 and 28 ° S in the south of the equator. Their spatial and temporal distribution is particularly linked to seasonal variation of weather (upwelling, thermal front), which defines primary production and therefore the amount of available prey (Tewkai et al., 2009). Besides, Saulnier (2014) argues that in the Indian Ocean, the spatio-temporal distribution of tuna’s catches is the result of a double phenomenon: first, the actual distribution of tuna bank that aggregate around FADs, and second, the behavior of fishermen, whose activity reflects more or less to local abundance. He also emphasized that the seiners fishing activity is marked by a strong seasonality in the Indian Ocean, which is characterized by a shift in northern Mozambique Channel from March to June (Saulnier, 2014). Indeed from March to May, the Mozambique Channel is rich in floating debris from land (tree trunks, coconut branches): a large number of catches is then conducted with natural floating matters. ÍNDICE 92 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data Piton and Magnier (1975) explained the reason for tuna fishermen operating in the Indian Ocean. They highlighted the potentially productive nature of the northwest coast of Madagascar, due to terrigenous nutrient inputs and anticyclonic circulation (convergence and concentration of nutrients), however, the weakness of the currents limit the productivity. This natural variability is added by the behaviour of tunas in front of eddies. Each year three main eddies usually occur in the north and the center (diameter 50 to 300 km), which can last from one week to several months. Alternately cyclonic and anticyclonic, succeed in the Mozambique Channel (Schouten et al., 2003). According Marsac and Tewkai (2010), direct catches of tuna are obtained either on the periphery or in the heart of eddies, where phytoplankton production is important. They argued that tuna use eddies to feed themselves. Distribution of species Katsuwonus pelamis, Thunnus albacares, Thunnus obesis are mainly captured in the northwest and Thunnus alalunga are caught more in the Central East part of ZEE. This distribution is due to the variability of environmental parameters. The main parameter, which determines the distribution of the different species of tuna in the Malagasy EEZ, ÍNDICE 93 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa is the temperature distribution. Temperature range required for each species are not the same. Albacore need colder waters than yellowfin and skipjack (Crosniere and Fourmanoire, 1961). The latter explains the dominance of yellowfin, Bigeye and skipjack tuna in the Mozambique channel while albacore clearly predominates in the East-Centre. The temperature in the Northwest part of Malagasy EEZ has a monthly average of about 28 °C, which is warmer compared to the Central East part, with a monthly average of 26 °C. Indeed, as various authors have described (Blackburn, 1965; Evans et al., 1981; Sund et al., 1981; Stretta, 1991), maximum abundance of Thunnus albacares is located in an area where the temperature varies between 20 and 30 °C, then between 20 and 29 °C for Katsuwonus pelamis. They added that for Thunnus obesis, their maximum abundance depends on the fishing gear used. For their part, Stretta and Slepoukha (1986) also noted that in a tropical water, Thunnus albacares and Katsuwonus pelamis are captured mainly in places where the temperature ranges from 22 ° C to 29 ° C. This was later confirmed by Fonteneau (1997) saying that in the Indian Ocean, catches are maximum with an average temperature of 28 °C for Thunnus albacares, 27 °C for Katsuwonus pelamis and Thunnus obesis, and 18 °C for albacore. These sea ÍNDICE 94 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data surface temperature ranges could be found in Madagascar’s EEZ. Finally, according Bonhommeau and Fromentin (2011), albacore do not approach the coast and prefer deep and open waters. The lack of oxygen and warm temperatures do not suit them (IRD, 2003). Along the linear east coast of Madagascar, there is the permanent passage of South Equatorial Current, with a maximum flow during the monsoon Northeast (STRETA et al., 2006). This current has all the necessary characteristics to influence the distribution of albacore in the east coast of Madagascar. Madagascar has many assets on the tuna activities carried in its EEZ. This study highlighted the potentially productive zones that may contribute to the optimal management of the resources. These areas are already well known and are widely used by fishermen. The distribution of tuna species in Madagascar’s EEZ varies in time and space depending on environmental parameters. The results from modeling confirm that the temperature distribution and the distribution of chlorophyll content are the two most important parameters which determine the distribution of these resources as well as the variation of capture within the EEZ. ÍNDICE 95 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa Fisheries Development From this study, further development of the large-scale tuna fishery can be considered as mentionned by the Indian Ocean Fishery Commission (1985). As the tuna fishery is not primarily a one-targeted species, besides, other species can be targeted among the various sashimi-quality fish, primarily yellowfin, bigeye, and southern bluefin tunas and billfishes (Wesley, 1991). It will also be expected that, with the great mobility of the present fleets, future catches of these tuna species within the Madagascar EEZ will be depending to resource availability as well as species-specific market demand. As the results of the model used for this study show that exploitable resources can be found in new areas within the EEZ, new fleet may relocate to these areas, but future trends in catches of these species will depend on their relative abundance, the evaluation of which is not part of this study. Fisheries Management It is clear that the need for management of Indian Ocean tuna fisheries is increasingly discussed in area fishery management forums (Wesley, 1991). In the near future, the continued expansion of both small-scale and large-scale tuna fisheries both inside and outside the EEZ could reduce catches. Con- ÍNDICE 96 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data flicts between tradional and indudtrial fishery were recently noticed in the north-west fishing area, especially for shrimp fishery. Traditional fishermen often accused industrial fleet to expand their fishing area to areas adjacent to that used by the small-scale fisheries, and ultimately lead to decreased catches in smallscale fisheries as well as the overfishing of the exploited stocks.Tuna fishery managers need the relevant results to address scientifically such issue. Though such conflicts does not occur in tuna fisheries, current research findings could be used to prevent both resource conflicts between small and large-scale of tuna fisheries and the risk of overfishing as well. The license sales were therefore chosen not to have to suffer in terms of the economy. However, the sector remains almost unchecked: catch statistics are difficult to verify, board observer proves to be an almost impossible operation. Finally, we simply accept unilateral declarations from ship-owners. For this it will be necessary to improve the quantity and quality of data collected during fishing operations. Socio-economists as fisheries scientists must find a balance between ship owners and the Malagasy State to establish a fair sharing of rents. ÍNDICE 97 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa References cited ANONYME. (2003). Etude du Comportement des Thonidés par l’Acoustique et la Pêche : Synthèse des résultats ECOTAP.IRD, 28p. BERGES, J-C., CAYRE, P., CITEAU,J.,DEMARCQ,H.,DUPOUY,C., GUILLOT, B.,GOHIN, F., LAURS, M., LE BORGNE, P.,LEROY, C., LIORZOU, B., MARSAC, F., PETIT, M., PIANET, R., STRETTA,J-M. (1989).Télédétection satellitaire et pêcherie thonière océanique. FAO LIBRARY AN: 289025-061, Document technique sur les pêches n°302,160p. BLACKBURN, M. (1965). Oceanography and the ecology of tunas. In: Oceanography arid Marine Biology. Annual Revue n° 3, pp.299322. BONHOMMEAU, S., et Fromentin, J. (2011). Les populations ichtyologiques de grands pélagiques. SRM GDG, Doc IFREMER, 9p. CONAND, F et RICHARDS.J.W. (1995). Distribution of Tuna Larvae between Madagascar and the Equator, Indian Ocean. ORSTOM. Biological Oceanography. Volume 1, Number 4, pp.321-336. CROSNIER.A et FOURMANOIR.P. (1961).Pêche au thon à Madagascar. Extrait du bulletin Madagascar n°185,3p. DUFOUR, P., et STRETTA, J.M. (1973). Fronts thermiques et thermohalins dans la région du Cap Lopez (Golfe de Guinée) en juin-juillet 1972: phytoplancton, Zooplancton, Micronecton et pêche thonière. ÍNDICE 98 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data Centre de Recherche océanographique Abidjan. Document Scientifique, Vol IV (3), pp. 99-142. EVANS, R. H., MACLAIN, D. R., et BAUER, R. A. (1981). Atlantic skipjack tuna: influences of the environment on their vulnerability to surface gear. Documents Scientifiques ,ICCAT IX, pp.264-274. FONTENEAU, A. (1997). Atlas des pêcheries thonières tropicales. Captures mondiales et environnement. Institut français de recherche scientifique pour le développement en coopération ,197p. IANELLI, J.N. (1995). Studies on the population structure of skipjack tuna, Katsuwonus pelamis, in the central and eastern Pacifi Ocean: Signs of interaction potential using environmental data. FAO, Status of Interactions of Pacific Tuna Fisheris in 1995. IOTC. (2015). Compendium of Active Conservation and Management Measures for the Indian Ocean Tuna Commission. CTOI-FAO Report, p.188. MARSAC, F ., et TEWKAI.E (2010). Tourbillons méso-échelle et top prédateurs dans le canal de Mozambique. In : Information spatiale pour l’environnement et les territoires, pp. 44-44. MARSAC, F. (1995). Analysis of small-scale movements of yellowfin tuna around Fish-Aggregating Devices (FADs) using sonic tags In: Proceedings; IPTP collective volume no. 9. MARSAC, F. (1991). The recent drop in the yellowfin catches by the Western Indian Ocean purse seine fishery: overfishing or oceano- ÍNDICE 99 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa graphic changes? In: FAO, Colombo (Sri Lanka). Indo-Pacific Tuna Development and Management Programme , 1991, p. 66-83. MARSAC, F. (1989). Pêcheries de thons tropicaux de l’océan Indien occidental. Antenne ORSTOM. Victoria-Mahé Seychelles. FAO LIBRARY AN : 289057, pp. 111-125. MARSAC, F. (1988). Some considerations on the yellowfin tuna stock status. In: FAO, Colombo (Sri Lanka). Indo-Pacific Tuna Development and Management Programme , 1988, p. 40-49. MARSAC, F. (1987)-b. A method to assess the set time of the purse seiners in the Indian Ocean. In: FAO, Colombo (Sri Lanka). Indo-Pacific Tuna Development and Management Programme , 1987, p. 155-161. MARSAC, F. (1987)-a. Preliminary yield per recruit analysis of the Indian Ocean yellowfin and bigeye fisheries In: FAO, Colombo (Sri Lanka). Indo-Pacific Tuna Development and Management Programme , 1987, p. 58-72. MARSAC, F. (1986). La peche de surface des thonides tropicaux dans l’ocean indien [Tropical tuna: surface fisheries in the Indian Ocean]. (French) In: FAO Fisheries Technical Paper (FAO), no. 282 / Rome (Italy), FAO , 1986 , 24 p. MARSAC, F. (1985). Preliminary study of the growth of yellowfin (Thunnus albacares) estimated from purse seine data in the western Indian Ocean. In: FAO, Colombo (Sri Lanka). Indo-Pacific Tuna Development and Management Programme , 1985, p. 84-90. ÍNDICE 100 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data NISHIDA, T. (1995). Influence of purse seine fishery on longline fishery for yellowfin tuna (Thunnus albacares) in the western Indian Ocean. FAO, Status of Interactions of Pacific Tuna Fisheris in 1995. PHILLIPS, S. J., R.P. ANDERSON, et SCHAPIER, R.E. (2006). Maximum Entropy Modeling of Species Geographic Distributions. Ecological Modeling 190, pp.231-259. PYTON, B et MAGNIER, Y. (1975). Remarque sur la circulation et les caractéristiques des eaux malgache de la couche superficielle entre Madagascar et l’équateur.Cah.ORSTOM.Sér.Océanogr.XIII (2), pp.117-132. RAJOHARISON, H. (1994). Note sur les indices gonado- somatiques et la fécondité des Albacores (Thunnus albacares) échantillonnés à Antsiranana en 1993 - Document Scientifique. AT/COI/PTRZ 14. 11 p. RAJOHARISON, H., CONAND, F. (1995). Étude de la reproduction de l’albacore dans le canal du Mozambique. Document Scientifique. AT/COI/PTRZ 20 .11 p. RALISON, E., et MINTEN, B. (2003). Accès aux ressources halieutiques et place de la pêche dans l’économie rurale. In : Revue du secteur agricole et de l’environnement, Banque mondiale, pp.6465. RAMANANTSOA, H. J. D. (2013). Utilisation des données satellitaires d’environnement pour la surveillance de pêche de Madagascar : Télédétection et Risque Naturel. Diplôme De MASTER2, Institut ÍNDICE 101 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa Observatoire Géophysique d’Antananarivo, Université de la Réunion, Université d’Antananarivo, 43p. RANDRIAMBOLA, T. (2012).National Pilot Projet. AMESD-MOI/TAFRIRPRX, 20p. SAULNIER, E. (2014). Dynamique spatio-temporelle de l’effort de pêche sur DCP des thoniers senneurs français dans l’océan indien. Diplôme d’Ingénieur de l’Institut Supérieur des Sciences Agronomiques, Agroalimentaires, Horticoles et du Paysage, Agrocampus Ouest, CFR de RENNES, 55p. SCHOUTEN, M. W., RIDDERINKHOF, H., VAN LEEUWEN, P. J. (2003). Eddies and variability in the Mozambique Channel. DeepSea Research volume 5, 90p. STRETTA, J-M., et SLEPOUKHA, M. (1986). Analyse des facteurs biotiques et abiotiques associés aux bancs de Listao. Proceedings of the International Commission for Conservation of Atlantic Tuna (ICCAT-Madrid Spain), Conference on the International Skipjack Program held in Canarias Spain on 21-29 June 1983, pp.161-169. STRETTA, J.M; GUYOMARD, D.; PETIT, M ; DESRUISSEAUX, M; GARDEL, L. (2006). Hydroclimat du sud-ouest de l’océan Indien et océanographie spatiale, pp.39-63. STRETTA, J-M. (1977). Température de surface et pêche thonière dans la zone frontale du cap Lopez en juin et juillet 1972. 1974 et 1975. ORSTOM, Service Océanographie Vol XV(2), pp.163-180. ÍNDICE 102 Analysis of environmental parameters effects on the spatial and temporal dynamics of tropical tuna in the EEZ of Madagascar: coupling remote sensing and catch data STRETTA, J-M. (1991). Forecasting models for tuna fishery with aerospatial remote sensing. Remote sensing vol12, n°4, pp.771-779. STRETTA, J-M., NOËL, J., et LE GUEN, J.C (1973). Mesures de température de surface par radiométrie aérienne et concentrations de thons au large d’Abidjan en août 1973. Document Multigr, CRO Abidjan, 16 p. SUND, P.N., BLACKBURN, M. et WILLIAMS, F. (1981). Tunas and their environment in the Pacific Ocean. Annual Revue n° 19, pp. 443-512. TEWKAI, E., ROSSI, V., SUDRE, J., WEIMERSKIRCH, H., LOPEZ, C., HERNANDEZ, G.E., MARSAC, F., GARÇON, V. (2009). Top marine predators track Lagrangian coherent structures. Proceedings of the National Academy of Sciences 106 (20), pp. 8245-8250. ÍNDICE 103 Marcellin Roandrianasolo Tsihoboto, Bemiasa John & Fanazava Rijasoa Notas 1. Url1 : http://oceancolor.gsfc.nasa.gov/ 2. Url2 : http://oceancolor.gsfc.nasa.gov/cgi/l3 3. Url3 : https://mgel.env.duke.edu/mget/download/ 4. Url4 : http://www.oracle.ugent.be/download.html ÍNDICE 104 DOI: 10.14198/MDTRRA2015.ESP.06 Petroleum production in symbiosis with fisheries? The norwegian experience Torleiv Bilstad1, Bjørnung Jensen2, Martin Toft2 and Evgenia Protasova1 Environmental Engineering, University of Stavanger, 4036, Norway Halliburton, Baroid Surface Solutions, Eldfiskveien 1, 4056 Norway [email protected] [email protected] [email protected] [email protected] 1 2 Abstract Fisheries and offshore Oil and Gas (O&G) industries have a long history of co-existence. Both industries leave an impact on the marine environment, and are subject to regulations in order to ensure sustainable use of resources. Offshore O&G exploration, drilling and production activities may impact fisheries through seismic activities, discharge of hazardous waste and presence of physical structures. ÍNDICE 105 Torleiv Bilstad, Bjørnung Jensen, Martin Toft & Evgenia Protasova Historically, cuttings from drilling sub-surface wells have been deposited directly from the platform to the seabed. However, environmental laws and regulations for the Norwegian offshore sector prohibit such practice when the oil on cutting exceeds 1% by weight. Re-injection of cuttings as a slurry into subsurface formations is still practiced. Due to migration, leaks, re-entering of slurry onto the seabed, and collapsing formations this disposal method is on a decline. Transport of oily cuttings to shore for final treatment is the preferred Norwegian practice. However, cutting treatment on platforms is also continuously evaluated. For logistics and cost reasons, as well as health, safety and environmental (HSE) and working environment reasons, emphasis is put on offshore waste minimization, reuse and recycle. Keywords: drilling cuttings, oil based mud, produced water, best available technologies (BAT) Résumé Les pêches et les industries Pétrolières et Gazières (P&G) offshore ont une longue histoire de coexistence. Les deux industries laissent un impact sur le milieu marin et sont soumises à des règlements afin de garantir une utilisation durable des ressources. Les activités d’exploration offshore, ÍNDICE 106 Petroleum production in symbiosis with fisheries? The norwegian experience forage et production de P&G peuvent affecter les pêches à travers des activités sismiques, le déversement de déchets dangereux et la présence de structures physiques. Historiquement, les déblais provenant de puits de forage sous la surface ont été déposés directement à partir de la plateforme au fond marin. Cependant, les lois et règlements environnementaux pour le secteur offshore norvégien interdisent une telle pratique lorsque l’huile de la coupe dépasse 1% en poids. La réinjection de déblais sous forme de boue dans des formations souterraines est encore pratiquée. À cause de la migration, les fuites, la boue rentrant sur le fond marin et l’effondrement des formations, cette méthode d’élimination est sur le déclin. Le transport des déblais huileux à terre pour le traitement final c’est la pratique que privilégient les norvégiens. Toutefois, le traitement des déblais sur les plateformes est également évalué en permanence. Pour des raisons de logistique et de coût, ainsi que pour des raisons de santé, de sécurité et d’environnement (HSE) et de milieu de travail, l’accent est mis sur la réduction des déchets en mer, la réutilisation et le recyclage. Mots clés : déblais de forage, huile à base de boue, eau produite, meilleures techniques disponibles (MTD) ÍNDICE 107 Torleiv Bilstad, Bjørnung Jensen, Martin Toft & Evgenia Protasova Introduction O n the Norwegian Continental Shelf co-existence of offshore O&G with fisheries and aqua culture is supported by strict regulations and zero discharge from O&G activities. Types and amount of fluids utilized when drilling a well determine to which extent the drilled cuttings are legally considered hazardous waste. The main categories of drilling fluids are oil based (OBM), water based (WBM) and synthetic based mud (SBM). The purpose of adding fluids to the drilling operations is to cool and lubricate the drill bit, to stabilize the well bore, to control subsurface pressure, to control formation pressure, to control well stability, to control corrosion, and to carry cuttings to the surface. Drill cuttings Drill cutting particle size varies between 10 µm and 20 mm depending on the drill bit, well bore length and geological formations. Depending on the quality of OBM, the geological formations and whether drilling is in hydrocarbon reservoirs, cuttings are coated with different hydrocarbons including PAHs, PCBs, and heavy metals. Re-injection of cuttings as a slurry into subsurface formations has over the last few years been ÍNDICE 108 based (OBM), water based (WBM) and synthetic based mud (SBM). The purpose of adding Petroleum production in symbiosis with fisheries? fluids to the drilling operations is to cool and lubricate the drill bit, to stabilize the well bore, The norwegian experience to control subsurface pressure, to control formation pressure, to control well stability, to control corrosion, and to carry cuttings to the surface. challenged due to several cases of loss of formation integrity, leading to migration of oil and water, leaks, cuttings re-enDrill cutting particle size varies between 10 µm and 20 mm depending on the drill bit, well tering the sea bed and collapsing formations. Such mishaps bore length and geological formations. Depending on the quality of OBM, the geological formations and whether into drillingincreased is in hydrocarbon reservoirs, cuttings design are coatedand with have developed focus on proper different hydrocarbons including PAHs, PCBs, and heavy metals. Re-injection of cuttings as a maintenance injection The re-injection is, slurry into subsurfaceofformations has wells. over the last fewmethod years been of challenged due to several cases of loss of formation integrity, leading to migration of oil and water, leaks, cuttings rehowever, used (Figure 1).mishaps have developed into increased entering the seastill bed widely and collapsing formations. Such DRILL CUTTINGS focus on proper design and maintenance of injection wells. The method of re-injection is, however, still widely used (Figure 1). 70.000 60.000 50.000 Tonns 40.000 30.000 20.000 10.000 0 2004 2005 2006 2007 2008 2009 2010 2011 2012 Year Figure 1. Oil Drilled Cuttings in Norwegian (Norsk Olje ogSector Gass, 2013) Figure 1.Based Oil Based DrilledInjection Cuttings InjectionSector in Norwegian Oljefriendly og Gass, 2013)classified as green and yellow WBM normally consists of (Norsk environmental chemicals, with regard to environmental toxicity, which allows for direct discharge to sea. However, in environmental sensitive areas such as the Barents Sea, also WBM discharges are in many areas prohibited or subject to governmental approval and possible discharge permit. The ÍNDICE 109 2 Torleiv Bilstad, Bjørnung Jensen, Martin Toft & Evgenia Protasova WBM normally consists of environmental friendly chemicals, classified as green and yellow with regard to environmental toxicity, which allows for direct discharge to sea. However, in environmental sensitive areas such as the Barents Sea, also WBM discharges are in many areas prohibited or subject to governmental approval and possible discharge permit. The Barents Sea is a “0-discharge area” and a permit is always required, also for sub-surface injection. Figure 2 shows the Barents of Seausing is a “0-discharge area” and a permit is always required, also for sub-surface trend WBM in Norway. injection. Figure 2 shows the trend of using WBM in Norway. 250.000 Tonns 200.000 150.000 100.000 50.000 0 2004 2005 2006 2007 2008 2009 2010 2011 2012 Year Figure 2. Water BasedCuttings Drilled Cuttings Disposed Offshore Olje og Norway Gass, 2013) Figure 2. Water Based Drilled Disposed Offshore Norway (Norsk (Norsk Olje og Gass, 2013) Treatment of OBM drilled cuttings is initiated offshore by a shale shaker consisting of vibrating screens. Further solids control could include gravitational sand settling, a specialized ÍNDICE 110 desander and deciliter as well as centrifuges, all successively removing smaller solids from the mud. The shale shaker is the universal common separation technique for separating fluids from cuttings. Each well typically produces 300 – 1800 tons from the shaker, with 5 – 15 % by volume oil. Petroleum production in symbiosis with fisheries? The norwegian experience Treatment of OBM drilled cuttings is initiated offshore by a shale shaker consisting of vibrating screens. Further solids control could include gravitational sand settling, a specialized desander and deciliter as well as centrifuges, all successively removing smaller solids from the mud. The shale shaker is the universal common separation technique for separating fluids from cuttings. Each well typically produces 300-1800 tons from the shaker, with 5-15 % by volume oil. Depending on local regulations and oil content on cuttings, available disposal options include discharge to sea, underground injection, and further offshore and onshore treatment. In Norway permits are required for all discharges as well as sub-surface injection. Figure 3 summarizes years of accumulated drilled cuttings mass production from the Norwegian offshore petroleum sector. Treatment of offshore generated drilled cuttings is a challenge compared with cuttings generated onshore. After shaker separation of mud and cuttings, the transport routes for the two components include internal transport on the rig itself, from the rig to vessel, further transport by vessel to onshore receiving facilities, and on to treatment facilities and possible reuse or final disposal. This is a cost issue of great concern; logistics and transportation of offshore drilled cuttings. ÍNDICE 111 Torleiv Bilstad, Bjørnung Jensen, Martin Toft & Evgenia Protasova 350.000 Oil Emulsion Drilling mud & cuttings Tonns 300.000 250.000 200.000 150.000 100.000 50.000 0 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Year FigureFigure 3. Oil Based Cuttings, mud and oil emulsions transported to shore from 3. OilDrilled Based Drilled Cuttings, mud and oil emulsions Norwegian Offshore Sector (Norsk Olje og Gass, 2013) transported to shore from Norwegian Offshore Sector (Norsk Olje og Gass, 2013) After the oily cuttings have been through a Thermomechanical Cuttings Cleaner (TCC) unit shown in Figure 4, the recovered drill fluid is compared to virgin drill fluid in Figure 5. After the oily cuttings have been through a Thermomechanical Cuttings Cleaner (TCC) unit shown in Figure 4, the recovered drill fluid is compared to virgin drill fluid in Figure 5. ÍNDICE 112 Figure 4. The Principal of the Thermomechanical Cuttings Process Mill (Halliburton, 2007) Year Figure 3. Oil Based Drilled Cuttings, mud and oil emulsions transported to shore from (Norsk Olje og Gass, 2013) Norwegian Offshore Sector Petroleum production in symbiosis with fisheries? The norwegian experience After the oily cuttings have been through a Thermomechanical Cuttings Cleaner (TCC) unit shown in Figure 4, the recovered drill fluid is compared to virgin drill fluid in Figure 5. Figure 4. The Principal of the Thermomechanical Cuttings Process Mill (Halliburton, 2007) Figure 4. The Principal of the Thermomechanical Cuttings Process Mill (Halliburton, 2007) 4 Figure 5. Comparing virgin drill fluid with TCC treated fluid recovered for reuse Figure 5. Comparing virgin drill fluid 2013) with TCC treated fluid recovered (MI Swaco, for reuse (MI Swaco, 2013) The process mill is the heart of the TCC separation process and converts kinetic energy to thermal energy by creating friction in the cuttings. Solids are recovered through an auger ÍNDICE system, discharged through a cell valve as dry113 powder and on to rehydration, with recovery of water prior to disposal. Oil and water flash off as vapors, and are condensed and separated in a condenser skid. The water and crushed cuttings are cleaned to levels below Norwegian requirements for sea discharge, 30 mg/L oil in water and 1 % oil by weight on cuttings. Torleiv Bilstad, Bjørnung Jensen, Martin Toft & Evgenia Protasova The process mill is the heart of the TCC separation process and converts kinetic energy to thermal energy by creating friction in the cuttings. Solids are recovered through an auger system, discharged through a cell valve as dry powder and on to rehydration, with recovery of water prior to disposal. Oil and water flash off as vapors, and are condensed and separated in a condenser skid. The water and crushed cuttings are cleaned to levels below Norwegian requirements for sea discharge, 30 mg/L oil in water and 1 % oil by weight on cuttings. Produced water Produced water is defined as a byproduct from oil and gas exploration and production. Water brought to the surface co-produced with oil and gas may include water originally in the reservoir, water injected into hydrocarbon formations, metals and varying amount of chemicals added during drilling, production and treatment processes (Aquatec, 2013). Due to presence of numerous hazardous components, produced water should be treated prior to discharge. Additionally, treated produced water should be tested for toxicity to marine ecosystems. Salinity of produced water varies from 100 mg/L to 400 000 mg/L (saturated brine), compared to 35 000 mg/L salinity in normal seawater (PWS, 2010). ÍNDICE 114 Petroleum production in symbiosis with fisheries? The norwegian experience Key parameters of produced water are according to Statoil (2014): –– Oil concentration of 100 - 500 ppm for oil field and 10-200 ppm for gas field –– Salinity of 1 - 40 % –– Oil droplet sizes of 2 - 20 microns –– Viscosity of 0.2 - 2 cP –– Density of 990 - 1050 kg/m3 –– Pressure of 10 to 80 bar –– Temperature of 30 to 150 oC. According to Walsh (2014) components in PW is summarized as: –– –– –– –– –– –– –– –– Dispersed oil Dissolved oil (HC, BTX, phenols, PAH, etc) Dissolved organic acids (SCFA, naphthenic acids) Dissolved formation minerals (NaCl, CaCO3, FeCO3, FeSx, BaSO4, etc) Dissolved metals (Fe, Zn, Mn, Cr, etc) Process & Production chemicals (Cl, MeOH, glycols, LDHI) Produced formation solids (clay, sand, carbonate) Precipitated mineral solids (CaCO3, FeCO3, FeSx, BaSO4, etc) ÍNDICE 115 Torleiv Bilstad, Bjørnung Jensen, Martin Toft & Evgenia Protasova –– Dissolved and precipitated corrosion products (metal oxides) –– Dissolved gasses (O2, H2S, CO2) –– Combinations of the above; i.e., Schmoo –– Various bacteria and by-products (SRB, GHB) There is a distinct difference between produced water from oil and gas production as presented in Table 1. The differences in produced water quality and composition from oil and gas fields play an important role in design of produced water treatment process. One of these important parameters is water/HC ratio; from 0.05 in gas fields up to 0.9 in oil fields. These values directly affect the choise of treatment processes. The composition and characteristics of produced water are strongly dependent on the origin of the water, oil quality and upstream processing. Produced water contains dissolved gasses, dissolved minerals, dissolved organics including hydrocarbons, suspended oil or oil droplets, sand and drilled cuttings as well as various production chemicals. The amount and composition of produced water can vary a great deal from one field to the other and during the lifetime of a field (Statoil, ÍNDICE 116 Petroleum production in symbiosis with fisheries? The norwegian experience 2014). Table 2 presents produced water compositions from different fields on the Norwegian Continental Shelf. Produced water discharge Discharge of produced water is regulated by law. Treatment based on regulations needs to be implemented for both sub-surface reinjection and water directly disposed of to the marine environment. Figure 6 shows produced water from offshore Norway. Discharges of produced water on the Norwegian Continental Shelf reached a peak in 2010 with a volume of 190 million m3. Production of produced water from the Norwegian Continental Shelf is predicted to decrease significantly from 2016. Minimizing produced water close to the production source is a priority. Practical use of produced water is reinjection into producing wells for pressure maintenance and enhanced oil recovery (EOR). This requires proper treatment before injection. Another disposal strategy is disposal of untreated produced water into aquifers. Data in Table 3 compare injected produced water in the US. Texas is the leading state in terms of both injections for disposal and for enhanced oil recovery purposes. ÍNDICE 117 Torleiv Bilstad, Bjørnung Jensen, Martin Toft & Evgenia Protasova Figure 6. Water Production Discharge from Continental Shelf (Statoil, 2012) Figure 6. Waterand Production and Norwegian Discharge from Norwegian Continental Shelf (Statoil, 2012) Presence of hydrocarbons in slop water is an additional separation challenge. Slop is run off from platform deck and consists of 80 % water with added components and mixtures of oilPresence of hydrocarbons slopwellbore water clean-up is an additional sepbased drilling fluid, water-based drillinginfluid, detergents, completion fluids, cement spacers, rig wash, brines with different salts and solids from cuttings. Slop is aration challenge. Slop is run off from platform deck and conusually shipped onshore for treatment from the Norwegian Continental Shelf. In order to reduce an alternative strategy components may be to inject and slop into subsurface sistsonshore of 80shipping, % water with added mixtures formations or offshore slop pretreatment. of oil-based drilling fluid, water-based drilling fluid, wellbore By 2020, the onshore oil and gas industry will generate over 500 million barrels of produced clean-up detergents, completion fluids, cement spacers, rig an water a day – driven by an increase in the production of unconventional oil and gas and increasing number of mature oilfields where water to oil ratios are growing significantly. wash, brines with different salts and solids from cuttings. Slop There will be huge opportunities for water companies offering solutions that enable is usually shippedcompanies onshore for treatment fromassociated the Norwegian exploration and production to overcome the challenges with managing thisContinental produced water and to turn it into a valuable asset rather than a waste stream. Shelf. In order to reduce onshore shipping, an alternative strategy may LAWS AND REGULATIONS be to inject slop into subsurface formations or offshore slop pretreatment. The marine ecosystem is a very sensitive and complex environment. Sustainability is often depending on human activity. In case of environmental disasters, healing of marine ecosystems may take tens of years, if at all healing. Such disasters often result in biological and ecological degradation and species extinction as well as significant economic losses for ÍNDICE 118governments have strict regulations and people in coastal regions. Internationally, requirements for discharge of hazardous components. Table 4 shows limits for oil content in water discharged to sea. Petroleum production in symbiosis with fisheries? The norwegian experience By 2020, the onshore oil and gas industry will generate over 500 million barrels of produced water a day – driven by an increase in the production of unconventional oil and gas and an increasing number of mature oilfields where water to oil ratios are growing significantly. There will be huge opportunities for water companies offering solutions that enable exploration and production companies to overcome the challenges associated with managing this produced water and to turn it into a valuable asset rather than a waste stream. Laws and regulations The marine ecosystem is a very sensitive and complex environment. Sustainability is often depending on human activity. In case of environmental disasters, healing of marine ecosystems may take tens of years, if at all healing. Such disasters often result in biological and ecological degradation and species extinction as well as significant economic losses for people in coastal regions. Internationally, governments have strict regulations and requirements for discharge of hazardous components. Table 4 shows limits for oil content in water discharged to sea. ÍNDICE 119 Torleiv Bilstad, Bjørnung Jensen, Martin Toft & Evgenia Protasova The OSPAR Commission and the Norwegian authorities set requirements for the use of environmentally friendly chemical additives (PLONOR, “yellow” and “green” chemicals), but exact discharge limits have only been set for the content of oil, less than 30 mg/L (NPD, 2012). PLONOR stands for Pose Little or No Risk. «Yellow» chemicals are chemicals in use that do include in “red or black” restricted categories. “Green” chemicals are chemicals in the PLONOR list of the OSPAR; permitted without specific conditions. Figure 7 presents development of regulations for oil content in discharged produced water with the main goal of “zero discharge” in 2020. Intense development and usage of best available technologies (BAT) make positive impact of achieving standards set by the authorities for safety and treatment of produced water. ÍNDICE 120 PLONOR stands for Pose Little or No Risk. «Yellow» chemicals are chemicals in use that do include in “red or black” restricted categories. “Green” chemicals are chemicals in the PLONOR list of the OSPAR; permitted without specific conditions. Figure 7 presents development of regulations for oil content in discharged produced water Petroleum production in2020. symbiosis with fisheries? with the main goal of “zero discharge” in Intense development and usage of best available technologies (BAT) positive impact of achieving standards set by the Themake norwegian experience authorities for safety and treatment of produced water. 7. Development of Produced Water Regulations (Statoil, FigureFigure 7. Development of Produced Water Regulations (Statoil, 2014) 2014) BEST AVAILABLE TECHNOLOGY Minimizing produced water close to the production source is a priority in development of Best available technology BAT. Produced water management strategy usually includes four main steps referring to Figure 8 (Statoil, 2014): Minimizing produced water close to the production source is a - water in shut-off (reduce production of Produced water in mature fieldsmanagement by isolating water priority development of BAT. water producing zones); strategy usually includes four main steps referring to Figure 8 - reinjection; - shallow2014): disposal (deposition); (Statoil, - produced water treatment or top side treatment. ÍNDICE 121 8 Torleiv Bilstad, Bjørnung Jensen, Martin Toft & Evgenia Protasova –– water shut-off (reduce production of water in mature fields by isolating water producing zones); –– reinjection; –– shallow disposal (deposition); –– produced water treatment or top side treatment. Figure 8. Produced Water Management Strategy (Statoil, 2014) Figure 8. Produced Water Management Strategy (Statoil, 2014) Reinjection is more usually top However, side water treatReinjection is usually costly more than top costly side waterthan treatment. reinjection could also be used for pressure maintenance and enhanced oil recovery. Top side treatment and ment. However, reinjection could also be used for pressure reinjecting both require proper treatment of produced water. Reinjection and shallow disposal options will depend onand production well properties and specific discharge permissions in order maintenance enhanced oil recovery. Top side treatment to design produced water treatment for minimum discharge requirements (Statoil, 2014). Norwegian guidelines for produced water treatment systems include, but are not limited to, two treatment stages to fulfill the World Bank Standard discharge limits, and three treatment ÍNDICE 122This should also apply for treatment of water stages to fulfill stricter discharge requirements. nd rd from 2 stage separator/3 stage separator/coalescer. In treatment systems with two treatment stages, the stages shall be based on different separation principles. A treatment stage is per Petroleum production in symbiosis with fisheries? The norwegian experience and reinjecting both require proper treatment of produced water. Reinjection and shallow disposal options will depend on production well properties and specific discharge permissions in order to design produced water treatment for minimum discharge requirements (Statoil, 2014). Norwegian guidelines for produced water treatment systems include, but are not limited to, two treatment stages to fulfill the World Bank Standard discharge limits, and three treatment stages to fulfill stricter discharge requirements. This should also apply for treatment of water from 2nd stage separator/3rd stage separator/coalescer. In treatment systems with two treatment stages, the stages shall be based on different separation principles. A treatment stage is per definition a separate physical oil removal stage (Statoil, 2014). Table 5 presents comparison of BAT for produced and slop water treatment, showing key parameters and conditions for successful implementation of each. Conclusions Sustainable management of the petroleum industry and its co-existence with the fishing sector may be achieved by developing and implementing BAT. Available technologies and strategies are sufficient for solving the drilling waste and pro- ÍNDICE 123 Torleiv Bilstad, Bjørnung Jensen, Martin Toft & Evgenia Protasova duced water challenges. The choice of solution is depending on composition, location, distance to shore and laws and regulations. BAT provides acceptable results for O&G waste treatment with respect to marine environmental conditions and laws and regulations. Enforcing laws and regulations is the key to sustainable coexistence between fisheries and O&G industries. References Aquatec. 2013. Produced Water Treatment and Beneficial Use Information Center [Online]. Available at: <http://aqwatec.mines.edu/ produced_water/intro/pw/> [Accessed 23.03.14]. EIA, US Energy Information Administration. 2014. Global Petroleum and Other Liquids [Online]. Available at: <http://www.eia.gov/forecasts/steo/report/global_oil.cfm> [Accessed 20.02.2014]. Halliburton. 2007. Baroid Surface Solutions. Thermal Desorption Technology. [Online]. Available at: <http://www.halliburton.com/ public/bar/contents/data_sheets/web/sales_data_sheets/sds059.pdf> [Accessed 20.02.2014]. MI Swaco. (2013). Base Oil GC/MS scan. Example from Bautino. Kazakhstan. Word–file. NPR, Norwegian Petroleum Directorate. 2012. Discharge of Produced Water [Online]. Available at: <http://www.npd.no/en/Publications/ Reports/Long-term-effects-of-discharges-to-sea-from-petro- ÍNDICE 124 Petroleum production in symbiosis with fisheries? The norwegian experience leum-activities/The-Oceans-and-Coastal-Areas/2-Dischargesof-produced-water/> [Accessed 23.03.2014]. Norske olje og gass. 2013. Environmental Report. Oil and Gas Industry. [Online]. Available at: <https://www.norskoljeoggass. no/Global/2013%20Dokumenter/Publikasjoner/Environmental%20Report%202013.pdf> [Accessed 20.03.2014] PWS, Produced Water Society. 2010. Produced Water Facts [Online]. Available at: <http://producedwatersociety.com/index.php/produced_water_facts/> [Accessed 23.03.2014]. SPE, The Society of Petroleum Engineers. 2009. Produced Water Management [Online]. Available at: <http://www.spe.org/dl/ docs/2009/Veil.pdf> [Accessed 01.04.2014]. Statoil. 2012. Presentation by Knut Åsnes at MinNovation Seminar at the University of Stavanger, Norway, April 26. Statoil. 2013. Water Production and Related Challenges [Online]. Available at: <http://www.ipt.ntnu.no/~jsg/undervisning/prosessering/gjester/LysarkRamstad2013.pdf> [Accessed 26.03.2014]. Statoil. 2014, Presentation by Anne Finborud at Separation Technology seminar at the University of Stavanger, Norway, February 27. Veolia Water. 2013. Application of MPPE for Treating Produced Water Toxins [Online]. Available at: http://www.tuvnel.com/assets/content_images/2_3%20VWS%20MPP%20Systems.pdf [Accessed 01.04.14]. ÍNDICE 125 Torleiv Bilstad, Bjørnung Jensen, Martin Toft & Evgenia Protasova Walsh, J. 2014. European Desalination Society, Two Day Course on “Water Treatment for Upstream Oil and Gas”, May 10-11 Grand Resort Hotel, Limassol, Cypros. Appendix Table 1. Parameters of Oil Field vs. Gas Condensate Field (Statoil, 2014) Specification Gas condensate field Oil field Gas/Liquid ratio (GLR) High Low to medium Water/Oil ratio (WOR) Low (< 0.05) Low to high (0-0.9) Quantity of water Low (< 50 m /h, condensed water only) Medium to high (502000 m3/h) Salinity of water phase No salt Medium to high (> 3 %) Foam stability Low Low to high Foaming problems Seldom experienced Often experienced, oil specific Water in oil stability Low Medium to high Emulsion problems Seldom experienced Often experienced, oil specific Oil in water stability High Low to high Produced water treatment Very difficult Easy to difficult, oil specific ÍNDICE 3 126 Petroleum production in symbiosis with fisheries? The norwegian experience Table 2. Produced Water Compositions from Norwegian Continental Shelf (Statoil, 2013) Ion (mg/L) Na+ K + Ormen lange* Oseberg Njord Gyda Utsira aquifer** Seawater 4428 12500 19000 65340 10100 11150 90 335 747 5640 262 420 Ca 220 978 4050 30185 494 435 Mg2+ 31 135 392 2325 714 1410 Ba2+ 19 134 765 485 6.7 0.1 Sr2+ 12 157 891 1085 12.1 6.6 Fe 0.6 0.1 23 - 5.7 0 Cl - 6804 21900 41400 167400 18500 20310 SO42- 7.9 5 15 - 2 2800 HCP3 1008 633 230 76 1110 150 Organic acids 640 120 360 - - - Salinity (TDS) 12650 36800 67513 272536 30100 36675 2+ - * O rmen lange – gas field, Oseberg – oil and gas; Njord – oil and gas; Gyda – oil field. ** Utsira Aquifer is saline aquifer CO2 storage in Norwegian part of North Sea from Sleipner E and W. ÍNDICE 127 Torleiv Bilstad, Bjørnung Jensen, Martin Toft & Evgenia Protasova Table 3. Produced Water Injection in the USA* (SPE, 2009) Place Injection for EOR Injection for Disposal Total injected volume California 232.12 million m3/ year 54.05 million m3/ year 286.17 million m3/ year New Mexico 55.65 million m3/ year 30.21 million m3/ year 85.86 million m3/ year Texas 842.63 million m3/ year 190.78 million m3/ year 1033.41 million m3/ year Total 1130.4 million m3/ year 275.04 million m3/ year million m3/year *Data is converted from barrels to m3 with 1 barrel = 0.1589873 m3. Table 4. International Environmental Discharge Limits of Oil in Water (Statoil, 2014) Location Maximum Oil Concentration (mg/L) North Sea 30 USA Offshore Effluent Guidelines (EPA) 29 average (42 maximum) NE Atlantic & Arctic Oceans 40 Mediterranean Sea 10 - 15 Caspian Sea 20 (under review) Red Sea 15 Nigeria 15 onshore; 30 offshore Indian Ocean (BH) 48 Western Australia 30 (50 maximum) ÍNDICE 128 Petroleum production in symbiosis with fisheries? The norwegian experience Table 5. Comparison of BAT (Statoil, 2014) Technology Treatment Hydrocyclone Primary/ secondary Driving force Enhanced gravity; centrifugal force Removal efficiency Field of application Mainly oil fields; high/ low water flow, high/ low OiW. 80-95 % of oil. Heidrun Mainly oil fields. High/ low water flow; high/ low OiW. 30-90 % oil Heidrun removal; depends on inlet OiW. Capacity Applicability 2-10 m3/h 540 m3/h CFU* Primary/ secondary CTour Tertiary Coalescence 125-300 (enhancing) / extraction m3/h Degasser Primary/ secondary MPPE** Tertiary Coalescence 43-90 m3/h All fields. Removes dissolved components; (enhancing) / extraction *** low water flow; low OiW; low solids and scale potential. Dissolved flotation/ gravity 200 m3/h Oil fields. Removes 95 % removal of dissolved components dispersed oil. and a certain amount of corrosion inhibitor. High/low water flow; condensate must be available. All fields. High/low water flow; low OiW, low salinity water should be carefully evaluated. 30-80 % oil Statfjord B removal, depends on inlet OiW, droplet size and operating performance. 50 - 90 % dispersed oil removal; 90 - 99 % of BTEX, PAH, NPD. Tested at Troll A,B,C Up to 99 % oil removal. Tested at Sleipner Coalescer Tertiary Coalescence 35-180 (enhancing) / extraction m3/h All fields. High/low water flow; high/low OiW; low solids and scale potential. Centrifuge Primary/ secondary Gas/condensate fields. Above 95 % oil Open drain; low flow; removal, depends high/low OiW. on flow rate and droplet size. Filters/ membranes Tertiary Coalescence (enhancing) / extraction Enhanced gravity 40-100 m3/h Statfjord A, B Åsgard A. Ekofisk 2, Gyda, Heidrun, Snorre B Gas/condensate fields. _ Low water flow; low OiW; low solids and scale potential; * CFU – Compact Flotation Unit. ** MPPE – Macro Porous Polymer Extraction. *** Data is taken from Veolia Water Solutions and Technologies. Available at: http://www.tuvnel.com/assets/content_images/2_3%20VWS%20 MPP%20Systems.pdf. ÍNDICE 129 DOI: 10.14198/MDTRRA2015.ESP.07 The common octopus fishery in South Portugal: a new shelter-pot Teresa Cerveira Borges Patricia Calixto João Sendão Centre of Marine Sciences (CCMAR) University of Algarve Campus de Gambelas. 8005-139 Faro, Portugal Contact: [email protected] Résumé Le poulpe est une des plus importantes ressources marines au Portugal, en particulier dans la région Sud (Algarve). Les engins de pêche les plus utilisés sont les “alcatruz” et le “covo”. Le “alcatruz” est un pot-abri traditionnellement faite d’argile, avec une forme d’amphore, mais récemment des pots cylindriques en plastique ont été introduits et sont deve- ÍNDICE 130 The common octopus fishery in South Portugal: a new shelter-pot nu plus populaire. Les “covos” sont des cages-pièges métalliques appâtés couverts par un filet en plastique. Bien que très populaire parmi les pêcheurs, le “alcatruz” traditionnelle à base d’argile a été remplacée par des pots en plastique cylindriques avec un grand succès, en raison de sa résistance à frein. Dans une tentative de continuer à utiliser la forme traditionnelle d’amphore, un nouveau type de pot-abri en plastique a été construit en association avec les pêcheurs. A fin d’étudier le comportement du poulpe commun (Octopus vulgaris) vers les pots traditionnels (pot amphore en argile), les pots plus modernes (pot cylindrique en plastique) et le nouveau pot (pot amphore en plastique), des expériences ont été réalisées dans des réservoirs contrôlés. Trois principales questions ont été tentées de répondre concernant les préférences des poulpes communs envers les pots: 1) Quel type de matériel: plastique ou argile (traditionnel); 2) Quelle forme: cylindrique ou amphore (traditionnel); 3) Quelle couleur: blanc, noir ou rouge brique (traditionnel). Les résultats n’ont indiqué pas de préférence vers le matériel de l’engin de pêche; une forte préférence pour la forme traditionnelle d’amphore; et une forte préférence pour la couleur noire. Mots Clés: Pêcherie de poulpe; pots-abris; engins de pêche de poulpe; comportement du poulpe. ÍNDICE 131 Teresa C. Borges, Patricia Calixto & João Sendão Abstract The octopus is one of the most important marine resources in Portugal, especially in the South, the Algarve region. The fishing gears mostly used are the “alcatruz” and the “covo”. The “alcatruz” is a shelter-pot traditionally made of clay, with an amphora shape, but recently plastic cylindrical pots were introduced and became more popular. “Covos” are baited metal cage-traps covered by a plastic net. Although very popular among fishermen, the traditional “alcatruz” made of clay has been replaced by cylindrical plastic pots with great success, due to its resistance to brake. In an attempt to continue using the traditional amphora-shape, a new type of plastic pot was built in association with fishermen. To study the behaviour of the common octopus (Octopus vulgaris) towards the traditional amphora clay shelter-pot, the cylindrical plastic shelter-pot and the new amphora plastic shelter-pot, several experiments were performed in controlled tanks. Three main questions were attempted to answer concerning the preferences of the common octopus towards the pots: 1) What kind of material: plastic or clay (traditional); 2) What shape: cylindrical or amphora (traditional); 3) What colour: white, black or red brick (traditional). The results showed no particular preference towards the material of the fishing ÍNDICE 132 The common octopus fishery in South Portugal: a new shelter-pot gear; a strong preference for the traditional amphora shape; and a strong preference for the black colour. Keywords: Octopus fishery; octopus shelter-pots; octopus fishing gear; octopus behaviour. Introduction I n Portugal, the common octopus (Octopus vulgaris) is the most relevant cephalopod species for the fishing sector, representing in the last few years an average of 6% of the total catch landed and 12% in value traded, which corresponds to the 3rd and 2nd place in the national ranking of important commercial species, respectively. The Algarve region is responsible for more then 50% of the national octopus landings, being mostly (90%) from the artisanal fishery (Docapesca, 2015). One of the most traditional southern Portuguese fishing gear for the common octopus (Octopus vulgaris) is a shelter-pot made of clay or plastic, with one opening and not baited (“alcatruz”), hung from a line and set along the sea floor. This fishing method is based on the knowledge of the octopus behaviour, which presents cover-seeking habits and territoriality. As the animal prevents the entry of other individuals, a large number of pots must be set in order to make a commercial- ÍNDICE 133 Teresa C. Borges, Patricia Calixto & João Sendão ly viable catch. Although, traditionally these shelter-pots are made of clay and with an amphora shape, more recently they have been replaced by cylindrical shape plastic shelter-pots due to their resistance to brake. The success of a fishery depends of the fishermen knowledge of the natural conditions and behaviour of the species (Rathjen, 1991), specially the behaviour of the target species towards a specific fishing gear (Watanuki & Kawamura, 1999). Since in the commercial octopus fishery with shelter-pots, only the big size animals are kept to be sold (Sanchez & Obarti, 1993) and all small size individuals are discarded to sea mostly alive (Groneveld, 2000), with less impact to benthonic communities (Jennings & Kaiser, 1998; Eno et al., 2001), a new type of plastic shelter-pot was built in association with fishermen, as an attempt to continue using the traditional amphora shape, as well as to decrease the costs since clay pots are more expensive than plastic pots and easily breakable. Therefore, a new type of pot was constructed and several laboratory experiments were performed to study the behaviour and preferences of the common octopus concerning the material, shape and colour of the fishing shelter-pots. ÍNDICE 134 The common octopus fishery in South Portugal: a new shelter-pot Material and Methods For the experiments, two similar cylindrical tanks were arranged (the adaptation tank and the experimental tank), with 2.5m diameter and 3.3m3 of volume, both in an open water system. While the adaptation tank was covered with two nets – one to avoid possible escapes (Boyle, 1991; Wood & Anderson, 2004) and the second to avoid direct sun light – the water column of the experimental tank was decreased to avoid escapees. All specimens of common octopus (Octopus vulgaris) were caught by fishermen with pots and traps and transferred immediately to the adaptation tank, where several PVC tubes were put in the tank, since the presence of shelters, good water quality and sufficient food allows several octopus specimens cohabit in the same tank without cannibalism problems (Boyle, 1991). Specimens weighed between 1.2kg and 1.9kg and with the exception of one, all were males. Octopus were fed daily during daylight (8 to 10 o’clock in the morning) and feeding consisted of clams (Cerastoderma edule), crab (Carcinus maenas) and mussels (Mytilus sp). However, during experiments only mussels were given. ÍNDICE 135 Teresa C. Borges, Patricia Calixto & João Sendão Fishing gear characteristics The clay pots used in this experiment are the same as normally used in the fishery – amphora shape, redbrick colour, 33cm height, 13cm opening diameter, 9liters inside volume and a settling angle of 38º (Figure 1A). The other two types of pots used were made of plastic (vinyl chloride), being one of cylindrical shape, black colour, 35cm height, 11cm opening diameter, 7liters volume and approximately 0º settling angle (Figure 1B), and the other (the new type of shelter-pot) of amphora shape, 31cm height, 12cm opening diameter, 8.6 litres volume and 30º settling angle (Figure 1C). On both plastic pots cement is used to be able to descend in the water column. Observation system To be able to observe the octopus behaviour with no interference from the observer (Martin & Bateson, 1996) and in a continuous form (24 hours a day), an observation system was mounted (Figure 2), with a record camera (EV-CAM HZr) above and in the middle of the experimental tank, to observe the full size tank. This camera was connected to a TV (Sony Digital 8 GV-D800E PAL) installed in an observatory room, ÍNDICE 136 The common octopus fishery in South Portugal: a new shelter-pot 13 cm 33 cm 38º (A) 11 cm 35 cm 0º (B) 12 cm 31 cm 30º (C) Figure 1. Characteristics of octopus fishing shelter-pots studied. (A) Traditional (amphora shape) clay shelter-pot (adapted from Borges, 2000). (B) Plastic shelter-pot (cylindrical shape). (C) New plastic shelter-pot (amphora shape). ÍNDICE 137 Teresa C. Borges, Patricia Calixto & João Sendão (Sony digital 8) (Time Laps video) (Sony digital 8) INDIRECT OBSERVATION DIRECT OBSERVATION (TV) (Experimental Tank) Figure 2. Diagram of the observation system mounted to observe and to record the octopus behaviour in continuous and without human interference. through which direct observation were possible. In the absence of the observer, the camera was connected to a video “time-lapse 168” (STV-S3000P Sony), which would record everything and later images were studied. This type of record was used specifically during night-time. Above the tank a florescent light connected to a timer was used, to pattern natural photoperiod. ÍNDICE 138 The common octopus fishery in South Portugal: a new shelter-pot Experiment design and procedure Three experiments were conducted to test the preferences concerning the type of material, the shape and the colour of the shelter-pots. Five specimens were used in each experiment, being one individual observed at each time, during three days and nights. Each of the experiments was already mounted when the specimens were put in the tank. For each experiment only one variable was tested. To test the material – clay or plastic – the shelter-pots used were the traditional clay amphora shape pots and the new plastic amphora shape pots, two of each, all of redbrick colour. To test the shape preferred – cylindrical or amphora – the pots used were the two types of plastic pots, two of each, and both black. To test the colour – redbrick, black or white – the pots used were the new plastic amphora shape pots, two of each colour. Procedure and data analyses All behavioural experimental procedures and data analyses followed were according to Martin & Bateson, 1996. ÍNDICE 139 Teresa C. Borges, Patricia Calixto & João Sendão The octopus position in relation to the shelter-pot was registered as sample points every fifteen minutes: 0 for absence (the octopus was not touching any shelter-pot) and 1 for presence in shelter-pot, being here differentiated the presence inside the shelter-pot or only touching the shelter-pot. The recorded position was the one observed at the beginning of every minute of every sample point. The proportion of time spent by each specimen in different shelter-pots was calculated, being X one shelter-pot with a specific material, shape or colour: Proportion of time in X = n. of presences in X / n. of points in the sample The percentage of time spent by each specimen in each shelter-pot was calculated: % time in Xtotal = n. of presences in Xtotal / n. of points in the sample * 100 The average for each pot was also calculated, adding the percentages of all individuals: Average % time in Xtotal = ∑ % time in Xtotal / n. of individuals All calculations were made for night and daytime data separately. For each of the experiments a χ2 test was applied to check significant differences between the results obtained and the results expected (H0 – no differences exist between the variables tested). ÍNDICE 140 The common octopus fishery in South Portugal: a new shelter-pot Results The results obtained during day and night times for the three experiments are summarized in Table 1 and Figure 3. The behaviour adopted by all specimens during the three experiments carried out, was similar. The specimens spent most of the time inside the shelter but also swimming and crawling across the tank, stopping in its different areas. When specimens were not inside shelter-pots, they often were in contact with it, assuming different positions in relation to it, like above the pot, half in half out, sideways, etc. However, the most adopted position by octopus specimens for all experiments was inside the shelter-pots. Concerning the experiment on shelter-pot material, the time spent by octopus specimens on each material did not vary much, with 26-24% of time spent on clay shelter-pots and 3532% in plastic, day and night respectively. No significant statistical differences were found (χ² test with P > 0.05). (Table 1; Figure 3 A) Concerning shape experiments, significant statistical differences were found (χ² test with P < 0.05) between the times spent by specimens in the amphora shelter-pots (53-41%) ÍNDICE 141 Teresa C. Borges, Patricia Calixto & João Sendão Shelter-pot % time Clay 26 Plastic 35 Amphora 53 Cylindrical 30 Black 67 Redbrick 19 White 0 Colour Shape Exps. Material Day Night χ2 Significance >0,05 NS <0,05 SD <0,05 SD Shelter-pot % time Clay 24 Plastic 32 Amphora 41 Cylindrical 12 Black 52 Redbrick 13 White 0,002 χ2 Significance >0,05 NS <0,05 SD <0,05 SD Table 1. Data summary of the common octopus behaviour towards shelter-pots of different material, shape and colour, during day and night, with χ2 test results applied to each experiment. (n = 5). (NS – not significant; SD – significant differences). and in the cylindrical ones (30-12%), day and night respectively. (Table 1; Figure 3 B). Concerning colour of the shelter-pots, significant statistical differences were also found (χ² test with P < 0.05) between the times spent by octopus in the black colour pots (67-52%), in the redbrick pots (19-13%) and in white pots (0-0.002%), day and night respectively. (Table 1; Figure 3 C). ÍNDICE 142 The common octopus fishery in South Portugal: a new shelter-pot Night Day (A) (B) (C) Figure 3. Percentage of time spent by octopus specimens in shelterpots (A) of different material (clay versus plastic), (B) of different shape (amphora versus cylindrical) and (C) of different colours (black vs. redbrick vs. white), during day and night times. (n.c. – no choice) ÍNDICE 143 1 Teresa C. Borges, Patricia Calixto & João Sendão Comparing day and night behaviour only results on the shelter-pot material experiment show significant statistical differences (χ² test with P < 0.05). Discussion The success of a fishery depends on fishermen knowledge of the natural conditions and behaviour of the species (Rathjen, 1991), specially the behaviour of the target species towards a specific fishing gear (Watanuki & Kawamura, 1999). The octopus fishing success of the shelter-pots is mainly due to the fact that this fishing gear catches mainly big size animals, while fishing nets, like trawl nets, catch specimens of all sizes, mainly small size animals (Sanchez & Obarti, 1993). In all experiments, the percentage of time spent by different individuals inside the shelter-pots was very high, reaching almost 100% in some cases. Several authors reached similar results, e.g., Mather (1988) determined a percentage of occupancy of 89%, while Katsanevakis & Verriopoulos (2004) presented a value of 93%. For these authors, this shows how important shelters are for octopus, probably one of the most important factors in their distribution (Mather, 1982a; Mather, 1982b). ÍNDICE 144 The common octopus fishery in South Portugal: a new shelter-pot During these experiments, although the specimens spent most of their time inside the shelter-pots to avoid predators (Mather, 1982b), it was also possible to observe that common octopus when not inside the shelter-pots were resting on top or beside them but always in contact with the shelter. This fact was also observed by Boyle (1980) showing the importance of the shelters for octopus. In the experiment on material preferences, although showing a slight preference for the plastic, this difference was not statistically significant. According to Boyle (1980) and Katsanevakis & Verriopoulos (2004), this is probably due to the fact that octopus occupies and uses all type of materials and objects to shelter, from natural features on the substrate (stone assemblages, shells) to human waste (pieces of porcelain, tires, and all sort of debris). Both the clay and new designed plastic shelter-pots present more or less the same characteristics in terms of size, internal volume, settling angle, aperture size and light entrance capacity. Therefore, and since according to Mather (1982b) these are the main characteristics for choosing a shelter, no significant differences were found regarding the choice of material of the shelter-pots. Concerning the preferences regarding shape (cylindrical vs. amphora) of the shelter-pots, octopus showed a preference ÍNDICE 145 Teresa C. Borges, Patricia Calixto & João Sendão towards the amphora shape. This may be due to the different shape, internal volume and settling angle of the pots, since the height and aperture diameter in both models seem to be not sufficiently different to influence the octopus choice. The amphora shape provides a narrow entrance to a wider inside area (greater inside volume) followed by a smaller inside area/volume in the back within the same housing/pot, which in the case of the cylindrical shelter-pots doesn’t since the inside volume is the same all along the pot. This may determine the octopus choice since, according to Mather (1982b), octopus prefer gastropod shells to bivalve shells, being the form of the first more like the shape of the new amphora shape shelter-pot. In some laboratory experiments, Rama-Villar et al. (1997) observed that octopus showed a clear preference for larger shelters, and Mather (1982a) also say that octopus are attracted by large artificial shelters. Since the new amphora shape shelter-pots have a volume of 8.6 litres and the cylindrical shape 7.0 litres, their preference agrees with the literature. The fact that they spend most of their time inside shelters (Boyle, 1980), and they even consume their prey within this (Mather, 1991a; Sanchez and Obarti, 1993) may justify the octopus preference for a bigger volume. ÍNDICE 146 The common octopus fishery in South Portugal: a new shelter-pot In addition to size/volume, the fact that the new shelter-pots have a higher settling angle causes its opening to be more upwards, lying at a height of 12cm above the ground, providing a better ability for the octopus to observe the surroundings from inside the shelter, while remaining protected. According to Mather (1991b), this characteristic is very important for the octopus choice of shelters at sea. The opening of the cylindrical shelter-pot is 6cm from the ground, therefore, with a smaller settling angle, which probably reduces the octopus feeling of shelter, as well as the capacity of observation outside. In practice, the other disadvantage of a small or zero settling angle is that in the natural environment the probability of these shelter-pots to be filled with sediment are higher and consequently, not chosen by the octopus. Regarding the octopus colour preferences, this was very clear, with the choice of black colour shelter-pots to be significant compared with the redbrick and white ones. Okamoto et al. (2001) also obtained the same results, stating that octopus prefer dark colours despite the contrast with the background. The percentage of occupancy of the white shelter-pots was almost negligible, even appearing that octopuses avoided this shelter-pot, which according to Bradley & Messenger (1977), can be explained by the fact that octopus are usually animals ÍNDICE 147 Teresa C. Borges, Patricia Calixto & João Sendão that hide and move in the dark. Roper (1997) makes a compilation of unpublished data from Voss, where it states that white shelter-pots do not give good catch results. According to Messenger (1977; 1979), it is likely that octopus cannot distinguish different colours but differentiates objects by way of contrast. However, studies by Kawamura et al. (2001) in Octopus aegina, demonstrates that the species has colour vision, whereas Octopus vulgaris did not, making choices based on the object tonality and preferring the darker ones. Most of the studies done on this subject are experiences of punishment–reward type, where different colours and/or shapes of objects are displayed to octopus to see if they learn to distinguish those objects and not in terms of occupancy of a shelter of a particular colour. Sutherland (1962) conducted an experiment to see if octopus discriminate shapes but also used different colours, being possible to observe that the largest number of attacks was done to black objects. According to Messenger & Sanders (1972), octopus prefers black instead of white (in cream colour tanks). Bradley & Messenger (1977) state that the preference in octopus is by contrast and not by the colour itself. In experiments with Sepia esculenta, Watanuki et al. (2000) concluded that this species does not approach traps covered with black plastic in white background ÍNDICE 148 The common octopus fishery in South Portugal: a new shelter-pot tanks because of the contrast and brightness caused by plastic. Therefore, these authors seem to suggest the same as the present study, namely that octopus prefers dark colours. Octopus are nocturnal animals both in laboratory and in captivity (Wells et al., 1983), having different levels of activity during day and night, therefore, being able to have different choices during these two periods. However, this did not occur in our experiments, probably because according to Wells et al. (1983) Octopus vulgaris is no longer strictly nocturnal when it is fed in captivity by changing its cycle and level of activity depending on the time it is fed. If fed in the morning (as it was in these experiments) their activity peaks become less intense and more scattered throughout the day, increasing also the time they are active (Wells et al., 1983). Therefore, since their behaviour was fairly regular throughout the 24 hours of observations, there were no significant differences in the behaviour and choices of the shelter-pots between nocturnal and daytime. Another relevant factor may have been that the lighting system mounted did not cause a marked difference between the light intensity of day and night, not truly simulating the natural photoperiod, leading again individuals to divide their activity along the daily 24 hours and thus not to show behavioural differences over that period. ÍNDICE 149 Teresa C. Borges, Patricia Calixto & João Sendão Conclusions The conclusion reached was that the common octopus showed a clear preference for the new amphora shape shelter-pots, comparing to the cylindrical ones, and the black colour shelter-pots comparing to the redbrick or white. Concerning the material of the different shelter-pots there was no significant differences between plastic and clay. Therefore, it seems likely that the new shelter-pot will be more efficient in terms of catches. References BORGES, T.C.; ERZINI, K.; IVO, G.; GONÇALVES, I.A.; PEREIRA, A.; RAPOSO, C.; SENDÃO, J.C.; RAMOS, F.; SILVA, L. and SOBRINO, I. 2000. Cephalopod resources dynamics and fisheries trends in the Algarve and the Gulf of Cadiz (ALCACEPH). Centro de Ciências do Mar, Universidade do Algarve. Instituto Español de Oceanografia (IEO). Final Report to the European Commission DG Fisheries. Study Project Nº 97/086. BOYLE, P.R. 1980. Home occupancy by male Octopus vulgaris in a large seawater tank. Anim. Behav. 28: 1123-1126. BOYLE, P.R. 1991. The UFAW handbook on the care and management of cephalopods in the laboratory. UFAW Press. ÍNDICE 150 The common octopus fishery in South Portugal: a new shelter-pot BRADLEY, E.A. and MESSENGER, J.B. 1977. Brightness preference in Octopus as a function of the background brightness. Mar. Behav. Physiol. 4: 243-251. ENO, N.; MACDONALD, D.; KINNEAR, J.; AMOS, S.; CHAPMAN, C.; BUNKER, F. and MUNRO, C. 2001. Effects of crustacean traps on benthic fauna. ICES. J. Mar. Sci. 58: 11-20. GRONEVELD, J. 2000. Stock assessment, ecology and economics as criteria for choosing between trap and trawl fisheries for spiny lobster Palinurus delagoae. Fish. Res. 48: 141-155. HANLON, R. and MESSENGER, J. 1996. Cephalopod behaviour. Cambridge University Press. JENNINGS, S. and KAISER, M.J. 1998. The effects of fishing on marine ecosystems. Adv. Mar. Biol. 34: 201-352. JOUFFRE, D.; INEJIH, A. and CAVERIVIÉRE, A. 2002. Les pots à poulpes: un danger pour la resource? In: Caverivière, A.; Thiam, M. and Jouffre, D. (eds). Le Poulpe Octopus vulgaris: Sénégal et Côtes Nord-ouest Africaines. Acts du Colloque. Centre de Recherches Océanografiques de Dakar-Thiaroye. (14-18 Février 2000): 247-255. KATSANEVAKIS, S. and VERRIOPOULOS, G. 2004. The ecology of Octopus vulgaris Cuvier, 1797, on soft sediment: availability and types of shelter. Sci. Mar. 68: 147-157. KAWAMURA, G., NOBUTOKI, K., ANRAKU, K., TANAKA, Y. and OKAMOTO, M. 2001. Color discrimination conditioning in two Octopus, ÍNDICE 151 Teresa C. Borges, Patricia Calixto & João Sendão Octopus aegina and Octopus vulgaris. Nippon Suisan Gakkaishi. 67: 35-39. MARTIN, P. and BATESON, P. 1996. Measuring Behaviour – an introduction guide. Cambridge University Press. MATHER, J.A. 1982a. Factors affecting the spatial distribution of natural populations of Octopus joubini Robson. Anim. Behav. 30: 11661170. MATHER, J.A. 1982b. Choice and competition: Their effects on occupancy of shell homes by Octopus joubini. Mar. Behav. Physiol. 8: 285-293. MATHER, J.A. 1988. Daytime activity of juvenile Octopus vulgaris in Bermuda. Malacologia. 29: 69-76. MATHER, J.A. 1991a. Foraging, feeding and prey remains in middens of juvenile Octopus vulgaris (Mollusca: Cephalopoda). J. Zool. of Lond. 224: 27-39. MATHER, J.A. 1991b. Navigation by spatial memory and use of visual landmarks in octopuses. J. Comp. Physiol. A. 168: 491-497. MESSENGER, J.B. 1977. Evidence that Octopus is colour blind. J. Exp. Biol. 70: 49-55. MESSENGER, J.B. 1979. The eyes and skin of Octopus: compensating for sensory deficiencies. Endeavour. 3: 92-98. MESSENGER, J.B. and SANDERS, G.D. 1972. Visual preference and two-cue discrimination learning in Octopus. Anim. Behav. 20 (3): 580-585. ÍNDICE 152 The common octopus fishery in South Portugal: a new shelter-pot OKAMOTO, M.; KAZUHICO, A.; KAWAMURA, G. and TANAKA, Y. 2001. Selectivity of color shelter by Octopus vulgaris and Octopus aegina under different background colors. Nippon Suisan Gakkaishi. 67: 672-677. RAMA-VILLAR, A.; FAYA-ANGUEIRA, V.; MOXICA, C. and REY-MÉNDEZ, M. 1997. Engorde de pulpo (Octopus vulgaris) en batea. In: VI Congresso Nacional de Acuicultura. Cartagena. Ministério da Agricultura, Pesca y Alimentacion. RATHJEN, W.F. 1991. Cephalopod capture methods: an overview. Bull. Mar. Sci. 49: 494-505. ROPER, C.F. 1997. Experimental octopus fisheries: two case studies. In: Lang, M.A. and Hochberg, F.G. (eds.). Proceedings of the Workshop on The Fishery and Market Potential of octopus in California. Smithsonian Institution. Washington. SANCHEZ, P. and OBARTI, R. 1993. The biology and fishery of Octopus vulgaris caught with clay pots on the Spanish Mediterranean coast. In: Okutani, T., O’Dor, R. and Kubodera, T. (eds.). Recent Advances in Cephalopod Fisheries Biology. Contributed papers to 1991 CIAC International Symposium and Proceedings of the Workshop on Age, Growth and Population Structure. Tokai University Press. Tokyo. 477-487. SUTHERLAND, N.S. 1962. Visual discrimination of shape by Octopus: squares and crosses. J. Comp. Physiol. Psychol. 55: 939-943. WATANUKI, N. and KAWAMURA, G. 1999. A review of cuttlefish basket trap fishery. South Pacific Study. 19: 31-48. ÍNDICE 153 Teresa C. Borges, Patricia Calixto & João Sendão WATANUKI, N.; HIRAYAMA, I. and KAWAMURA, G. 2000. Why do cuttlefish Sepia esculenta enter basket traps? Space occupation habit hypothesis. Fish. Sci. 60: 190-197. WELLS, M.J.; O’DOR, R.K.; MANGOLD, K. and WELLS, J. 1983. Diurnal changes in activity and metabolic rate in Octopus vulgaris. Mar. Behav. Physiol. 9: 275-287. WOOD, J.B. and ANDERSON, R.C. 2004. Interspecific evaluation of octopus escape behaviour. J. Appl. Ani. Welf. Sci. 7: 95-106. ÍNDICE 154 DOI: 10.14198/MDTRRA2015.ESP.08 Environmental sustainability analysis of the clam (Ruditapes decussatus, Linaeus 1758) fishery in Zaboussa production area (southeastern Tunisia) using the MSC fisheries standard Rafik Nouaili1, 2, Carlos Montero-Castaño1, 3, José Luis Sánchez-Lizaso1 Department of Marine Sciences and Applied Biology, University of Alicante, POB, 99, E-03080 Alicante, Spain. 2 General Directorate for Fisheries an Aquaculture, 30 Rue Alain Savary 1002 Tunis Tunisie. 3 Marine Stewardship Council, Paseo de La Habana, 26, 7º puerta 4, 28036, Madrid, Spain. 1 Abstract The Tunisian grooved carpet clam Ruditapes decussatus (Linaeus 1758) fishery is of interest to the authorities due to its social importance and its economic contribution given the ÍNDICE 155 Rafik Nouaili, Carlos Montero-Castaño & José Luis Sánchez-Lizaso export nature of its product. Efforts have been made to ensure proper management and development of this fishery. A sustainable exploitation of the natural resource is of crucial relevance to guarantee the socio-economic role of the fishery. Therefore, sustainability should be integrated within those management measures and development actions. To analyse the sustainability level of the fishery concerning the main obstacles and actions needed to achieve it, the most recognized tool worldwide is the MSC certification program throughout its fisheries standard. The present study assesses the Zaboussa production area clam fishery using the 31 performance indicators of the 3 principles of the MSC standard for sustainable fisheries. The results of the assessment show that this fishery could be potentially considered sustainable and, therefore, certifiable though implementing an action plan to satisfy four conditions to improve research, surveillance and monitoring measures. Keywords: clam fishery, Ruditapes decussatus, MSC certification, management, sustainability, Tunisia, Mediterranean Sea. ÍNDICE 156 Environmental sustainability analysis of the clam (Ruditapes decussatus, Linaeus 1758) fishery in Zaboussa production area (southeastern Tunisia) using the MSC fisheries standard Résumé La pêcherie tunisienne de la palourde croisée d’Europe Tunisienne Ruditapes decussatus (Linaeus 1758) présente un intérêt certain en raison de son poids social et économique et sa contribution dans la dynamique des exportations des produits de la pêche. Des efforts ont été déployés pour assurer la gestion et la promotion de cette filière. Une exploitation durable de la ressource naturelle est donc d’une importance cruciale pour garantir le rôle socio-économique de la pêche. Ainsi, la durabilité devrait impérativement être intégrée au niveau des mesures de gestion et des actions de développement. Pour analyser le niveau de durabilité d’une pêcherie en mettant en exergue les principales contraintes et les actions nécessaires pour y remédier, l’outil le plus reconnu au monde est le programme de certification MSC dont les standards sont souvent utilisés pour plusieurs pêcheries. La présente étude a évalué la pêche à pied de la palourde dans la zone de production de Zaboussa en utilisant 31 indicateurs de performance des 3 principes de la norme MSC. Les résultats de l’évaluation montrent que cette pêcherie pourrait être considérée potentiellement bien gérée et, par conséquent, éligible à cette certification à condition d’établir un plan d’action pour remplir quatre conditions ayant pour ÍNDICE 157 Rafik Nouaili, Carlos Montero-Castaño & José Luis Sánchez-Lizaso principaux thèmes la recherche et investigations de l’espèce cible et le contrôle et surveillance de l’activité de pêche. Mots-clés : pêche de la palourde, Ruditapes decussatus, certification MSC, gestion, durabilité, la Tunisie, la mer Méditerranée. 1. Introduction T he world’s marine fisheries resources are under enormous pressure. The global fishing effort is estimated to exceed the optimum by a factor of three to four (Pauly and al., 2002). FAO reported that Mediterranean and Black Sea had 33 percent of assessed stocks fully exploited, 50 percent overexploited, and the remaining 17 percent non-fully exploited in 2009 (Sofia, 2014). The reasons for this crisis can be found, not just in illegal practices but also in fisheries management failures such as an inappropriate fleet modernization, inadequate efficiency increase in fishing gear and methods or the increase of water pollution (Nouaili, 2013). Modern fisheries management is moving towards a precautionary approach to ensure sustainable utilization of our marine resources (ICES, 1997). Several mechanisms have been introduced by governments at the national, regional and international levels to face sustainability (Nouaili, 2013). Notably ÍNDICE 158 Environmental sustainability analysis of the clam (Ruditapes decussatus, Linaeus 1758) fishery in Zaboussa production area (southeastern Tunisia) using the MSC fisheries standard in the case of Tunisia there should not only be an emphasis on decreasing the fishing effort but also on the coordination with the European Common Fisheries Policy. Additionally, the globalized nature of the seafood market worldwide implies that commercial issues are key features to integrate in the decision making process of the fisheries management. Thus, commercial tools such as eco-labels and certification programs might play a relevant role to drive improvements within fisheries. Fisheries certification is an emerging market-based instrument existing alongside traditional regulatory and economic policies (Pérez-Ramirez, 2012). Since the 1990s several eco-labelling schemes for fisheries have developed in response to public society concerns regarding the sustainability of fish stocks, the impacts of fisheries on other species and the effects of the fishing activity on marine habitats (Kirby et al., 2014). The Marine Stewardship Council (MSC) is the most-known fisheries certification organization (Froese et al,. 2012). MSC Principles and Criteria are further designed to recognize and emphasize that management efforts are most likely to be successful in accomplishing the goals of conservation and sustainable use of marine resources when there is full co-operation among the full range of fisheries stakeholders, including ÍNDICE 159 Rafik Nouaili, Carlos Montero-Castaño & José Luis Sánchez-Lizaso those who are dependent on fishing for their food and livelihood (MSC, 2002). There are currently 216 certified fisheries in the World and 111 in assessment and 10.5% of wild caught global seafood landings are MSC certified or in assessment (MSC a, 2015). Among these 327 fisheries, there are some clams’ fisheries included which mobilizes a large community of small-scale fishers throughout the world. The first fishery in this category to become MSC certified was the Burry Inlet estuary hand-raking fishery on the western part of the United Kingdom, which is certified since 2001 (MSC b, 2015). The clam fishery in Tunisia has an important socio-economic impact. On one hand, it implies an important contribution in terms of employment and, on the other hand, the export of clams constitutes a considerable engine for economic growth in the region (Nouaili, 2007). Several projects have been developed, with the support of the Tunisian Government, addressed to support the clam fishery sector through the establishment of a regulatory and institutional basis or the improvement of supervision and monitoring activities. Although the achievements of those projects and the fact that the clam sector seems overall to be well organized, a lot of measures and actions could be considered in order to improve the en- ÍNDICE 160 Environmental sustainability analysis of the clam (Ruditapes decussatus, Linaeus 1758) fishery in Zaboussa production area (southeastern Tunisia) using the MSC fisheries standard vironmental and socioeconomic performance of the fishery, especially in the field of resource management and promotion of the product. A potential certification of the Tunisian clam fishery against the requirements of the MSC certification program might not only lead to an improved market-access and hence a potential increase in prices, but also to serve as a monitoring tool to assure the sustainable exploitation of clams which could be expanded to other neighbouring countries in the southern Mediterranean region. This article is focused on the presentation and description of activities related to fishing, processing and marketing clams (Ruditapes decussatus) in Tunisia and the sustainability analysis against the MSC fisheries standard of this fishery in the Zaboussa production area. 2. Presentation and description of the clam sector in Tunisia Ruditapes decussatus (Linnaeus, 1758) is the only species of bivalve molluscs which is harvested in the wild on the Tunisian coast (Zamouri-Langar, 2010). Its fishing activity started at the turn of the 1950’s at a time when foreign demand for clams was growing. The Tunisian coastal zone is known for their natural populations of clam in some particular areas. This ÍNDICE 161 Rafik Nouaili, Carlos Montero-Castaño & José Luis Sánchez-Lizaso irregular distribution of resources, concentrated in the south of Tunisia and nearly absent in the central area, explains the presence of a large population of by foot fishermen, especially in the regions of Sfax, Gabes and Medenine (Nouaili, 2013). At the begging of the fishery, Tunisian clams were not subject to any prior treatment and were exported in bulk to European countries. The depuration procedure was responsibility of importers meaning that there was a shortfall for Tunisian operators (Belkahia, 1997). Due to the trade liberalization, new standards and requirements have been established for imports of seafood products in several countries including the European market. The European Union (EU) has enacted numerous directives laying down the sanitary and hygienic conditions for the production and the access to the market of seafood products and live bivalve molluscs in particular (Nouaili, 2007). Since 1995, Tunisia has been implementing several actions to adapt the production, processing, transportation and marketing activities to the European market requirements. These efforts have resulted in the accreditation and registration of Tunisia in the list of countries allowed to export to the EU in 1998 (Ibn Ichbil, 2010). Since then, the clam industry has established a new organizational structure which has contribut- ÍNDICE 162 Environmental sustainability analysis of the clam (Ruditapes decussatus, Linaeus 1758) fishery in Zaboussa production area (southeastern Tunisia) using the MSC fisheries standard ed to i) the creation of 17 production areas of bivalve molluscs, each with its own sanitary and hygienic code (table 1) ii) the implementation of a sanitary and hygienic monitoring network and iii) achieving the approval for Depuration and Dispatch Centres (DDC) for clams in accordance with national legislation and sanitary and hygienic requirements (Belkahia, 1997 et Nouaili, 2007). Table 1. Delimitations of clam production areas in Tunisia (MARHP, 2004) Lake of Tunis (North) B Sanitary number T1 Chennal of Tunis C T2 Menzel Jemil C B1 Faroua C B2 North of Sfax C S1 Gargour B S2 Guetifa C S3 Production areas ÍNDICE Classification 163 Geographic data Lake chikli North shore of the lake Rades port TGM line-South Lake 300 m from dike, ONP discharge, Wadi Nechrine 1km bridge, railway tracks Tinja South point of jazira kébira Draa Ben Zied Haggouna Pier Tabia Sidi Freah Ras Bourmada Ras Barkallah Rafik Nouaili, Carlos Montero-Castaño & José Luis Sánchez-Lizaso W.North Maltine B Sanitary number S4 W.South Maltine B S5 Skhira B S6 North Gabes B G1 South Gabes 1 B G2 South Gabes 2 B G3 North Mednine B M1 Boughrara lagoon C M2 North Djerba B M3 Lamsa B M4 Production areas Classification Geographic data Wadi kébir Ras Younga Nord Ras Younga Sud Ras Ferchatt Chaara Nadhour Bou-Saïd Wadi Om Ghram Tarf El Ma Wadi Ashan Wadi Om El Abayer Wadi Om El Abayer Sabkha Mezessar Sabkha Mezessar Cable teleg.(Tarf Jorf) N (Câb teleg).O (Litt Meden) E (Litt Djerba).S (Borj Kastill) Câble Teleg.(Côté Djerba) Houmet Souk Lamsa et Jdaria Fishers on foot are important players in the clam sector. They are mostly women working in extreme weather conditions and earning lower incomes than the minimum wage. Outside the local community, this contribution by the women has no visibility and remains unacknowledged. Clam sector development ÍNDICE 164 Environmental sustainability analysis of the clam (Ruditapes decussatus, Linaeus 1758) fishery in Zaboussa production area (southeastern Tunisia) using the MSC fisheries standard and harvesting groups have been working since 2004 both to organize fishing activities and primary marketing (Nouaili, 2013). These groups act as a link between fishers and exporters (Nouaili, 2007) The General Directorate of Fisheries and Aquaculture is the competent authority for the sector at national level. It is responsible for upgrading the industry and maintaining national and international requirements. It determines the fishing seasons, issuing of fishing licenses and controlling the activity from collection to product development. The General Directorate of Veterinary Services on the other hand is responsible for technical control (sanitary and hygiene) of seafood products. It has the authority to control the import, export and monitor the sanitary and hygienic characteristics of seafood products at each step of the production chain (Nouaili, 2013). A network monitors microbiological and animal health parameters as well as toxic phytoplankton, biotoxins and chemical contaminants. Laboratories participating in this network belong to the Institute of Veterinary Research of Tunisia and the National Institute of Science and Technology of the Sea (Nouaili, 2007). Moreover, the depuration of clams is provided by nearly twenty DDCs. ÍNDICE 165 Rafik Nouaili, Carlos Montero-Castaño & José Luis Sánchez-Lizaso Before the development of the clam sector and the establishment of the harvesting groups, the clams’ primary marketing was controlled and administrated by wholesalers who bought clams from fishers and sold them to DDCs, hotels and restaurants. Nowadays, the creation of these harvesting groups, one for each production area, constitutes a step towards a greater accountability of the different participants of the production phases (Belkahia, 1997). Groups are the relay point between fishers and buyers. It is thus mandatory to procure clams exclusively from representatives of these groups that provide product from a safe area. This is the first step to ensure traceability. National clam production in Tunisia has experienced rather irregular changes over time. Indeed, this production shows strong annual variations explained by the temporary closures of production areas due to sanitary conditions or market trends. The evolution of the production during the last decade has witnessed a relative stabilization around an average of 600 tonnes per year (Nouaili, 2007). This increase is primarily due to the improvement and stabilization of the sanitary conditions of the production areas, the better control of these sanitary conditions in the management areas and consolidation of operators in the sector (Ibn Ichbil, 2010 and Nouai- ÍNDICE 166 Environmental sustainability analysis of the clam (Ruditapes decussatus, Linaeus 1758) fishery in Zaboussa production area (southeastern Tunisia) using the MSC fisheries standard li, 2007). The European Union, and more in particular Italy, remains the main destination for clam exports where more than 75% of the entire Tunisian clam production is consumed (Nouaili, 2007). 3. MSC certification scenario of the Tunisian clam fishery 3.1. Methodology for scoring fisheries against the MSC Principles and Criteria for Sustainable Fishing The MSC was established in 1997 with the primary goals of ensuring the sustainability of fish stocks globally, minimizing environmental impacts, and promoting effective management of fisheries (Martin et al., 2012). The organization sets sustainable fisheries standard based on three principles: (1) status of the target stock, (2) ecological and environmental impact of the fishery, and (3) management systems within which the fishery operates. Under each of these principles are 31 ‘performance indicators’ that address specific aspects. Fisheries must achieve a minimum score of 60 (out of a possible 100) for each performance indicator and an average score of 80 or above for each principle. For any performance indicator scoring below 80 but above 60, the certifier must assign a condition that will raise the score to 80 over a specified pe- ÍNDICE 167 Rafik Nouaili, Carlos Montero-Castaño & José Luis Sánchez-Lizaso riod of time to a maximum of five years (MSC, 2002). This scoring system is applied to measure the sustainability level of a particular fishing activity defined by a “Unit of Certification (UoC)”. UoC is defined as “target stock(s) combined with the fishing method/gear and practice (including vessel type/s) pursuing that stock, and any fleets, or groups of vessels, or individual fishing operators that are covered by an MSC fishery certificate (MSC c, 2015).” In order to justify the scoring of each performance indicator, we carried out an analysis of all the relevant documents such as the statistics data, the research works but also the scientific publications. Moreover, surveys and semi-structured interviews have been elaborated with the different stakeholders. This database allowed evaluating the performance of the fishery in relation to the evaluation tree. The results presented come from a pre-assessment analysis and therefore this is just a previous exercise of a real MSC full assessment needed in order to become MSC certified. 3.2. Unit of Certification analysed and proposed The Unit of Certification (UoC) analysed in this study and proposed for a potential MSC certification is the grooved carpet ÍNDICE 168 Environmental sustainability analysis of the clam (Ruditapes decussatus, Linaeus 1758) fishery in Zaboussa production area (southeastern Tunisia) using the MSC fisheries standard clam (R. decussatus) hand-raking fishery harvested on foot in the production area of Zaboussa. The eligible fishers whose fishing activity is analysed in this UoC and therefore the beneficiaries of its potential certification are the Inter-Professional Group of Fishing products and all members and participants from the group of the exploitation of the clam in Zaboussa area. This Unit of Certification is defined as shown in Table 2. Table 2. Details of unit of certification clam production area of Zaboussa Target species Ruditapes decussata – Grooved carpet shell Stock Gulf of Gabes (Region of Sfax - production area : S5) Fishing area It extends along the tidal zone (15 km) from the south Oued Maltine to the port of Zaboussa so that’s from Ras Younga South to Ras Ferichatt including Kneiss island. Fishing method Harvest on foot: small hand rake practiced mostly by women Authority fishery management The Ministry of Agriculture: District Fisheries and Aquaculture - Commissioner Regional for Development Agriculture of Sfax and the Directorate-General for Fisheries and Aquaculture. ÍNDICE 169 Rafik Nouaili, Carlos Montero-Castaño & José Luis Sánchez-Lizaso 3.3. Overview of the clam fishery carried out by the “Unit of Certification” The production area of Zaboussa is located near to El Hchichina town in the delegation of Ghraiba, about 70 km south of the Sfax city, and it is part of the Gulf of Gabes. This zone is characterized by Kneiss archipelago which consists of four islands, the most important being the island of Bessila covering approximately 480 ha. The zone holds the sanitary code “S5” corresponding to the coastal area between the Oued Maltine and port Zaboussa (Fig. 1). It is remarkable gravitational tides in the Gulf of Gabes, to 1.4m in height between high and low tide. Reasons for choosing this area include particularly that (i) it has benefited from activities of the FAO project “Strengthening the role of women in the shellfish clam industry in Tunisia” and (ii) it contributes significantly to national production with usually more than 40 percent of total production. Currently, nearly 400 persons were involved in this activity in the study area, the majority of them from Maaouma, Khaoula and Hechichina communities. This area is served by two landing sites. This population is young, mostly women, with an average age of 30 years. The activity is learnt on the job across generations (Nouaili, 2007). ÍNDICE 170 Environmental sustainability analysis of the clam (Ruditapes decussatus, Linaeus 1758) fishery in Zaboussa production area (southeastern Tunisia) using the MSC fisheries standard Figure 1. Delimitations of Zaboussa clam production area “S5”. These fisherwomen are poor and marginalized and tend to have low educational qualifications and are registered in the clam development and harvesting group of EZDIHAR, an entity created in 2004 whose wholesalers are exclusively men. Many of the local fisherwomen believe that this entity has not improved their income or working conditions (Nouaili, 2013). As soon as the tide is low, collectors make their way to the production areas. They are scattered along the foreshore ÍNDICE 171 Rafik Nouaili, Carlos Montero-Castaño & José Luis Sánchez-Lizaso equipped with a sickle and container. The duration of the fishery is dependent on the duration and characteristics of the tide (Belkahia, 1997). The shellfish picker´s activity is subject to a special permit issued by the competent authority: “Commission for regional agricultural development”. Under the regulations, fishing clams is prohibited during the period from 15th May to 30th September each year. Administrative supervision aims at ensuring compliance with fisheries regulations including minimum catch size (diameter of 3.5 cm) and the origin of product (Mekni, 2011). Indeed, the primary marketing of clam always takes place at the landing sites that have been officially designated by regional authorities and where sorting and weighing takes place under the supervision of representatives of the harvesting groups. The transaction of sales brings together “Fishery Guardians”, representatives of Depuration and Dispatch Centers (DDC) and representatives of harvesting groups. Besides,a transport document, the first link of traceability, is issued exclusively by Fishery Guardians to the representatives of Depuration and Dispatch Centers (DDC) (Nouaili, 2007). DDC also must comply with the requirements of the identification marking and labelling by which traceability is established ÍNDICE 172 Environmental sustainability analysis of the clam (Ruditapes decussatus, Linaeus 1758) fishery in Zaboussa production area (southeastern Tunisia) using the MSC fisheries standard from primary production to the stage of the local market or export. In Tunisia, research on stock assessment of bivalve molluscs is ad hoc and sporadic (Nouaili, 2013). The results of a study to evaluate stocks of bivalve species in Tunisian coastal areas undertaken by the National Institute for Marine Science and Technology in the framework of the project «Stock Assessment of Ecosystem Benthic Resources» during 2002-2005 revealed a large potential for commercially valuable shellfish exploitation including the clam species Ruditapes decussatus whose concentrations can reach more than 400 specimens per m2 (Zamouri-Langar et al., 2001). Using data from eleven clam fishing seasons (2002-2013) in the production area S5, it was possible to apply a Schaefer’s model which concluded that MSY is about 200 tonnes for a fishing effort of 65,000 fishermen*days of actual work (Fig. 2). The stock of clam in S5 area seems moderately exploited (Nouaili, 2013). ÍNDICE 173 Rafik Nouaili, Carlos Montero-Castaño & José Luis Sánchez-Lizaso Figure 2: CPUE in Kg /(fisherman*day) in front of effort in fisherman*day for the Zaboussa clam fishery (2002-2013) to estimate parameter of the Schaefer model. 4. Analysis results With regard to the Principles and Criteria of the MSC, for the case of Zaboussa clam fishery, the three Principles have achieved a scoring above 80 (green colour) and no performance indicator achieved less than 60, which is the minimum ÍNDICE 174 Environmental sustainability analysis of the clam (Ruditapes decussatus, Linaeus 1758) fishery in Zaboussa production area (southeastern Tunisia) using the MSC fisheries standard level required for certification (table 3). It is therefore determined that the Zaboussa clam fishery could be potentially considered sustainable, and therefore certifiable according to the Marine Stewardship Council Principles and Criteria for Sustainable Fisheries. The chosen basis is therefore eligible for certification provided that a plan is established to satisfy four conditions having as principal themes the research and investigation of the target species and the supervision and monitoring of the fishing activity. The requirements for Principle 1 are fulfilled through the stock status indicator and the existence of a precautionary harvest strategy. Appropriate measures were taken in order to preserve the resource and to allow its sustained use such as (i) closure of fishery during the period from May 15th to September 30th of each year (ii) obligation to keep a fishery license renewable annually and issued by the competent authority, fixing of the size of the first capture to 35 mm and ban on the use of any fishing gear other than the sickle (Nouaili, 2013). Research is carried out to identify valuable information such as abundance, stock distribution and age structure. An integrated management plan for this region was prepared since 2008. ÍNDICE 175 Rafik Nouaili, Carlos Montero-Castaño & José Luis Sánchez-Lizaso Table 3. Score at Performance Indicator level Principle Wt (L1) Component Wt (L2) PI No. Performance Indicator (PI) One 1 Outcome 0.5 1.1.1 Stock status 1.1.2 Reference points 1.1.3 Stock rebuilding 1.2.1 Harvest strategy 1.2.2 Harvest control rules & tools 1.2.3 Information & monitoring 1.2.4 Assessment of stock status 2.1.1 Outcome 2.1.2 Management 2.1.3 Information 2.2.1 Outcome 2.2.2 Management 2.2.3 Information 2.3.1 Outcome 2.3.2 Management 2.3.3 Information 2.4.1 Outcome 2.4.2 Management 2.4.3 Information 2.5.1 Outcome 2.5.2 Management 2.5.3 Information 3.1.1 Legal & customary framework 3.1.2 Consultation, roles & responsibilities 3.1.3 Long term objectives 3.1.4 Incentives for sustainable fishing 3.2.1 Fishery specific objectives 3.2.2 Decision making processes 3.2.3 Compliance & enforcement 3.2.4 Research plan 3.2.5 Management performance evaluation Management Two 1 Retained species Bycatch species ETP species Habitats Ecosystem Three 1 Governance and policy Fishery specific management system 0.5 0.2 0.2 0.2 0.2 0.2 0.5 0.5 Not considered Key colour scoring ÍNDICE 176 Score Above 80 Between 60 and 80 Environmental sustainability analysis of the clam (Ruditapes decussatus, Linaeus 1758) fishery in Zaboussa production area (southeastern Tunisia) using the MSC fisheries standard Regarding the requirements for Principle 2, they are met through the focused use of resource. Indeed, Tunisian fishing by foot exclusively target clams (Ruditapes decussatus) and consequently the fishery does not pose a risk of serious or irreversible harm to other retained species and does not hinder recovery of depleted retained species. Clam fishing by food using a sickle is a highly selective fishing method and has no major side effects on the bycatch populations or on the endangered, threatened and protected (ETP) species. The study of Kneiss management plan explored all potential impacts on the ecosystem within that area and none were given to shellfish pickers’ activity (APAL, 2008). Lastly, regarding the Principle 3, the requirements are fulfilled through an efficient management system within an appropriate legal framework in accordance with MSC Principles 1 and 2. The follow-up of clams sector and all measures initiated were done by steering national and regional committees comprising all stakeholders and actors (including research, and administration) in order to ensure their views and a participatory management (Nouaili, 2013). Four performance indicators (PI) were noted between 60 and 80 (yellow colour in table 3) and resulted in specific conditions. For these PI, conditions must be established to enable ÍNDICE 177 Rafik Nouaili, Carlos Montero-Castaño & José Luis Sánchez-Lizaso the beneficiaries to improve the performance of the fishery. In the eventual case of proceeding with a certification, the beneficiaries shall develop an Action Plan to satisfy these four conditions. The competent authority should build on the significant accomplishments and recommendations achieved from the research program to develop an appropriate strategy for the management and development of the resource. This strategy will therefore respond to the state of the stock and the elements of the harvest strategy. Furthermore, they ought to work together towards achieving management objectives reflected in the target and limit reference points (Nouaili, 2013). 5. Conclusion The Zaboussa clam fishery can be a good candidate to be the first MSC certified fishery in northern Africa and Mediterranean sea due to the organization of the fishermen around a professional structure, the highly selective nature of the fishing technique, the interest in the ecological and environmental heritage, and the existence of a fairly complete organizational and institutional base to ensure a participatory approach in the planning and management of the sector. However, on the other hand, the marginal and precarious situation of the fish- ÍNDICE 178 Environmental sustainability analysis of the clam (Ruditapes decussatus, Linaeus 1758) fishery in Zaboussa production area (southeastern Tunisia) using the MSC fisheries standard ers’ population and the relatively early stage of the Inter-Professional group can be seen as a real obstacle to the potential certification. In conclusion, the MSC certification project of the coastal artisanal fishery of Tunisian clams is relatively ambitious considering the shellfish picker´s precarious situation. Moreover, obtaining MSC certification would be a consecration of Tunisian efforts in management and development of fisheries. This will also call for greater coordination between all the stakeholders including research for the stock assessment component of clam’s fishery, administration and extension for customized professional and technical support and finally fishermen group, principal player, for the provision and endorsement of the concept of MSC certification. Acknowledgements The authors are grateful to all interviewees for sharing their experiences and challenges. The authors would also like to thank the staff of Mediterranean Agronomic Institute of Zaragoza (IAMZ) especially Professor Bernardo Basurco as well as lecturers and colleagues from International Master on Sustainable Fisheries Management. ÍNDICE 179 Rafik Nouaili, Carlos Montero-Castaño & José Luis Sánchez-Lizaso References APAL, 2008. Agence de Protection et d’Aménagement du littoral. Etude sur l’élaboration du plan de gestion des îles Keneis et préparation de sa mise en œuvre, Agriconsulting-Azimut-Shoreline, Rapport première phase, p107. BELKAHIA, R. 1997. Support for the sector of fishing clams by foot. Tunis: Centre for Research, Studies, Documentation and Information on Women. 123p. FAO, 2014. Report sofia State of the World’s Fisheries and Aquaculture, Food and Agriculture Organization of the United Nations, Roma. 253pp. FROESE, R AND PROELSS, A. 2012. Evaluation and legal assessment of certified seafood. Mar. Policy, Available at :http://dx.doi. org/10.1016/j.marpol.2012.03.017. IBN ICHBIL, A. 2010. Contribution to study of clam in Zaboussa. Master Production and Aquatic Ecosystem. Tunisia: National Agronomy Institute- Tunis. 73 p. ICES, 1997. Report of the Study Group on the Precautionary Approach to Fisheries Management. ICES CM /Assess 7, 41 pp. KIRBY, D.S., VISSER, C. AND HANICH, Q. 2014. Assessment of eco-labelling schemes for Pacific tuna fisheries. Mar Policy, 43, pp. 132–142 MARHP, 2004. Ministère de l’Agriculture, des Ressources Hydrauliques et de la Pêche. Note de service n°100/2759 du 26 novembre 2004 établissant un programme de contrôle de santé publique et de surveillance de la production des mollusques bivalves destinés à l’ex- ÍNDICE 180 Environmental sustainability analysis of the clam (Ruditapes decussatus, Linaeus 1758) fishery in Zaboussa production area (southeastern Tunisia) using the MSC fisheries standard portation vers les pays de l’Union Européenne. In Guide National de Bonnes Pratiques d’Hygiène pour la collecte et le transport des mollusques bivalves, 56, 32 p. MARTIN, S.H., CAMBRIDGE, T.A., GRIEVE, C., NIMMO, F.M AND AGNEW, D.J. 2012. An evaluation of environmental changes within fisheries involved in the Marine Stewardship Council certification scheme. Rev Fish Sci, 20, pp. 61–69. MEKNI, H., 2011. Vers une meilleure exploitation de la zone de collecte de la palourde par le groupement de développement de pêche). Rapport de consultation TCP/TU/3203 Renforcement du rôle de la femme pêcheur à pied de la palourde dans la région de Zaboussa, Gouvernorat de Sfax, p 103. MSC, 2010. Marine Stewardship Council. Principles and Criteria for Sustainable Fishing. London: MSC; 8 pp. Available at https:// www.msc.org/documents/scheme-documents/msc-standards/ MSC_environmental_standard_for_sustainable_fishing.pdf MSC (a), 2015. Marine Stewardship Council. Annual Report 2013-14; 25 pp. Available at: https://www.msc.org/documents/msc-brochures/annual-report-archive/annual-report-2013-14-english Accessed February 2, 2015. MSC (b), 2015. Track a fisher. http://www.msc.org/track-a-fishery/ fisheries-in-the-program/certified/north-east-atlantic/bury-inlet-cockle (accessed 16/01/2015). MSC (c), 2015. Marine Stewardship Council. MSC-MSCI Vocabulary. V1.1, 20th February 2015. Available at https://www.msc.org/ documents/scheme-documents/msc-msci-vocabulary. ÍNDICE 181 Rafik Nouaili, Carlos Montero-Castaño & José Luis Sánchez-Lizaso NOUAILI, R. 2007. Contribution to study of the die and practice fishing clam in Tunisia. Master Production and Aquatic Ecosystem. Tunisia: National Agronomy Institute- Tunis. 2007. 146 p. NOUAILI, R. 2013. Study on the feasibility of MSC certification of clam fishery in Tunisia. International Master on sustainable fisheries management. Spain: University of Alicante (UA) and International and Centre for Advanced Mediterranean Agronomic Studies (CIHEAM). 2013. Available at: http://rua.ua.es/dspace/bitstream/10045/36119/1/Tesis%20m%C3%A1ster%20Rafik%20 Nouaili.pdf. PAULY, D., CHRISTENSEN, V., GUÉNETTE, S., PITCHER, T.J, SUMAILA, U.R, WALTERS, C.J, WATSON R AND ZELLER, D. 2002. Towards sustainability in world fisheries. Nature 418:689695. PÉREZ-RAMÌREZ M, LLUCH-COTA S, LASTA M., 2012. MSC certification in Argentina: Stakeholders’ perceptions and lessons learned. Mar. Policy 2012; 36: 1182–1187. ZAMOURI-LANGAR, N. 2010. Modeling and analysis of operating parameters of bivalve stocks Ruditapes decussatus in tunisian coastal, doctoral thesis, National Agronomy Institute- Tunis. 234p. ZAMOURI-LANGAR, N., CHOUBA L. AND EL ABED, A. 2001. Benthic Macrofauna in three Ports of Tunisia : Impacts of Pollution. Proceedings of the fifth international conference on the Mediterranean coastal environment. MEDCOAST : 641-650p. ÍNDICE 182 DOI: 10.14198/MDTRRA2015.ESP.09 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar Mahatante Tsimanaoraty Paubert1, Fanazava Rijasoa2 & Mara Edouard Remanevy3 IH.SM – Institut Halieutique et des Sciences Marines, BP : 141, route du Port Mahavatse, Toliara (601) – MADAGASCAR ( : 00 261 34 02 41515 / [email protected]) 2 Centre de Surveillance des Pêches/Madagascar et Ingénieur Halieute de l’IH.SM, Toliara (601) – MADAGASCAR ( : 00 261 32 07 038 71 / [email protected]) 3 Ecole Doctorale de l’IH.SM, Université de Toliara, Avenue Monja Jaona, Toliara (601) – MADAGASCAR ( : 00 261 34 02 431 21 / [email protected]) 1 Abstract The deep southern Madagascar is very reputed by the succession of famines – kere, that lead the death of people and ÍNDICE 183 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy livestock in that region. Those famines are due to repetitive droughts that occur periodically caused by climate variability in that area. We have conducted socio-economic assessment within three fishermen villages to better understand the life style of the southern coastal community. Then, traditional fishing survey has been undertaken to better understand and identify the characteristics of fishing activities and identify the main potential resources. Thus, a simple assessment of the climate variability was directed to well apprehend the climate risks and to have an overview on the community vulnerability. Socio-economic assessment results shown that fishing activity plays an important role in the southern coastal community livelihood and its development will contribute a lot to improve food security. The fishing survey results let us to conclude that the southern Madagascar still has lots of resources that are less exploited – except lobsters and shellfish. Lobsters and big pelagic and demersal fishes constitute the potential halieutic resources. The main climate risk is the drought – since 1896 till 2014, 14 droughts episodes have occurred and caused 14 kere. For a better climate variability adaptation, the development of the fishing activity will enhance fishermen adaptation capacity ÍNDICE 184 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar and resilience and improve the food security in whole. A deep assessment of the southern Madagascar upwelling system and the Indian Ocean Dipole (IOD) is recommended to well apprehend their characteristics as they are linked to the upcoming of drought. Keywords: deep southern Madagascar, socio-economic survey, traditional fishing activity, drought, climate variability, adaptation, food security. Résumé L’extrême sud de Madagascar est très réputé par la succession des famines – kere, qui a provoqué des pertes des vies humaines et des bétails dans cette région. Ces famines sont causées par les sécheresses répétitives qui se produisent périodiquement à cause des variabilités climatiques dans cette partie de l’Ile. Nous avons mené une étude socio-économique auprès des trois villages de pêcheurs pour mieux comprendre le style de vie des communautés du littoral sud malagasy. En outre, des activités de suivi de pêche traditionnelle ont été entreprises afin de mieux comprendre et d’identifier les caractéristiques des activités de pêche et d’identifier les principales ressources halieutiques potentielles. Ainsi, une étude simple ÍNDICE 185 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy des variabilités climatiques a été effectuée pour mieux appréhender les risques climatiques et pour avoir un aperçu sur la vulnérabilité des communautés. Les résultats de l’étude socio-économique ont montré que la pêche joue un rôle important dans la subsistance des communautés du littoral sud et son développement contribuera énormément à l’amélioration de la sécurité alimentaire dans la région. Les résultats de suivis de pêche nous ont permis de conclure que le sud de Madagascar dispose encore d’énormes ressources qui sont sous-exploitées – sauf la langouste et le coquillage. La langouste et les gros poissons pélagiques et démersaux constituent les ressources halieutiques potentielles. Le principal risque climatique est la sécheresse – depuis 1896 jusqu’en 2014, 14 épisodes de sécheresse se sont produites et ont entraîné 14 kere. Pour une meilleure adaptation aux variabilités climatiques, le développement des activités de pêche renforcera la capacité d’adaptation et de résilience des pêcheurs et améliora la sécurité alimentaire en général. Une étude approfondie de l’upwelling sud malagasy et le dipôle de l’océan indien (IOD) est également recommandée pour mieux comprendre leurs caractéristiques car ces phénomènes sont liés à la survenue de sécheresse dans le sud. ÍNDICE 186 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar Mots clés : extrême sud de Madagascar, étude socio-économique, activité de pêche traditionnelle, sécheresse, variabilité climatique, adaptation, sécurité alimentaire. 1. Introduction S ituée dans l’Extrême Sud de Madagascar (Decary, 1933, Pavin de Lafarge, 1997, PRD, 2005, Razanadrainy, 2010, Rajaonarison, 2015), l’Androy (1) se trouve entre la rivière Menarandra et le fleuve Mandrare (Defoort, 1913, Decary, 1930, Battistini, 1964, Heurtebize, 1986). C’est une zone semi-aride (Mara, 1990, Arivelo, 2009) avec une déficience en eau de 9 à 11 mois (Arivelo, 2009, Raholijao, 2009). L’indice d’aridité est de 9,4 à Ambovombe Androy, 6,2 à Beloha Androy, 5,8 à Faux Cap et 7,3 à Tsihombe contre 24 à Fort-Dauphin (Diverge, 1949 in Battistini, 1964), alors, quel que soit la classification adoptée et le critère employé, le Sud reste comme étant la région la plus sèche de Madagascar (Doncques, 1975). Décrite comme étant la Région la plus pauvre de la Grande Ile (Morlat, 2008) et placée parmi les secteurs les plus défavorisés de Madagascar (Lebigre et Reaud-Thomas, 1995), elle est caractérisée par la présence d’une sécheresse régulière ÍNDICE 187 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy qui est à l’origine à la fois des séries de Kere qui y règnent et l’émigration vers le Nord de sa population. Le littoral de l’Androy mesure environ 250 km (PRD, 2005) et est caractérisé par une alternance des dunes et des fourrés épineux qui sont à la merci du vent dominant « tiomena (2) », l’Alizé qui souffle en permanence toute l’année (Mara, 1990), contribuant à sa géomorphologie. Devant ce littoral se prolonge le large plateau continental – 38 miles en face de Cap Sainte-Marie (Berthois et al, 1964), source de la haute potentialité halieutique et économique de la côte sud malgache. De plus, l’année 2010, l’Expédition Atimo vata’e a rapporté l’importance de l’endémisme régional qui concourt à faire du «Grand Sud» une région biogéographiquement séparée du reste de Madagascar (Tianarisoa, 2010). La richesse en ressources halieutiques du Sud trouve aussi son origine dans l’existence dans cette région d’une zone d’upwelling (3) qui constitue les principales sources d’enrichissement trophique du milieu marin (Bemiasa, 2009 et Voldsund, 2011). Cependant, si la pêche constitue l’activité principale de la majorité de la population littorale (Razanoelisoa, 2008), dans l’Androy, elle se pratique d’une manière très timide; malgré la classification de cette activité comme étant parmi les plus vieilles du monde (Rejela, 1993). A part ÍNDICE 188 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar quelques pionniers de pêcheurs Ntandroy, c’est surtout l’arrivée des pêcheurs de Fort-dauphin, Androka, Fenambosa, Anakao et Toliara, depuis les années 80, qui a incité petit à petit les Ntandroy à s’intéresser à la pêche. Par ailleurs, depuis plusieurs décennies, la région Androy est affectée par des variabilités climatiques. Tovondrafale, en 2015, a noté que le sud était déjà sec avant l’implantation des humains à Madagascar vers l’an 500 AD (Lovei, 2013), notamment l’arrivée du premier peuplement bantous dans l’Androy – cas d’Antalaky, vallée de Manambovo – sud de Madagascar, qui selon Heurtebize et Verin, 1974 vers XIè et XIIè siècle mais 840±80 BP selon Pearson et al. (1996). Cette situation constitue un facteur limitant pour la production agricole et met ladite région parmi celles qui sont vulnérables au changement climatique (Pana, 2006 et Mahatante, 2010). Par conséquent, d’une part, la capacité d’adaptation de la population aux aléas climatiques est faible et, d’autre part, les ressources marines sont moins exploitées et très peu étudiées. La présente étude a pour objectifs de mettre en exergue les caractéristiques socio-économiques des communautés du littoral de l’Androy (i), d’identifier et d’étudier les ressources halieutiques potentielles (ii) et enfin de proposer des mesures d’adaptation aux variabilités climatiques (iii), après avoir déterminé ÍNDICE 189 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy les principaux enjeux environnementaux ainsi que les risques climatiques auxquels font face les communautés étudiées. 2. Méthodologie Pour mener l’étude, trois sites de débarquement ont été choisis le long du littoral Androy, à savoir, Ezanavo – à l’est, Kotoala – au milieu, et Lavanono – à l’ouest; sites situés entre l’embouchure du fleuve Mandrare à l’Est, et celle du fleuve Menarandra, à l’Ouest (fig. 1). Figure 1 : Carte des sites de débarquement étudiés ÍNDICE 190 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar Tableau 1 : Monographie simple des sites choisis Village Ezanavo Kotoala Lavanono Population 350 500 760 Ménages 80 110 180 Pêcheurs (4) 120 190 330 Pirogues 30 à 35 15 à 20 45 à 50 (Source : enquêtes auprès des Chefs Fokontany, 2014) Il est à noter que ces sites d’études sont habités majoritairement par le groupe ethnique Ntandroy – un ensemble de communautés originellement agro-éleveurs. Le tableau 1 récapitule une simple monographie effectuée auprès des Chef Fokontany des sites choisis. 2.1- Approches adoptées pour la collecte des données Une étude socio-économique a été menée en 2012 auprès des 3 gros villages (5) de pêcheurs utilisant les trois sites de débarquement choisis (fig.1) pour collecter les données socio-économiques. L’interview des pêcheurs s’est passée au niveau des sites de débarquement et dans leurs ménages de manière individuelle et aléatoire. Au total, pour ces trois villages, 180/640 pêcheurs ont été interviewés, soit 28%. Pour ce faire, la technique d’enquête développée par Cinner et al. en 2008 et MacClanahan et al. en 2014, en utilisant un questionnaire préétabli a été utilisé permettant d’obtenir plusieurs informations telles que les noms des pêcheurs, leur ÍNDICE 191 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy âge, leur origine, leurs types d’activités, leurs dépenses mensuelles, leur résilience sociale, leur volonté d’adhérer dans des associations communautaires et agricoles ainsi que leur volonté de participer dans une prise de décision quelconque au sein de leurs communautés et autres. Quant aux données de pêche, des suivis de 15 mois (d’octobre 2011 en décembre 2012) ont été effectués auprès des trois sites de débarquement choisis. Pendant cette période, 2 à 3 suivis par semaine, de manière systématique, ont été effectués comme il a été adopté par Razanoelisoa, 2008, quand le temps nous les a permis. Les données obtenues lors des enquêtes de 10 à 15 pirogues, selon la méthode qui a été utilisée par Mahatante, 2008 et Ramahatratra, 2014, soit 20 à 50% du nombre total des pirogues sorties, comprennent des séries de données des trois saisons caractérisant l’Extrême Sud (Asara, Asotry et Faosa) (6). Pour terminer, concernant les données climatiques et sur les famines, des séries de données ont été obtenues auprès du Service de Recherche de la Direction Générale de la Météorologie de Madagascar (DGM) et du Centre National Antiacridien (CNA) d’Ambovombe afin de bien mettre en évidence les variabilités climatiques interannuelles et intra annuelles dans le Sud. Ensuite, des documents ont été consultés pour acqué- ÍNDICE 192 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar rir des données sur les famines qui se sont produites dans le sud ainsi que leurs caractéristiques. Enfin, nous avons mené des documentations sur les années de survenue d’El Nino dans le pacifique équatorial oriental. 2.2. Traitement et analyse des données Pour chacun des types de données, des bases de données sur Excel ont été créées. Concernant les données socio-économiques, les variables étudiées ont été codées afin de faciliter leurs traitements. Les moyennes, totaux ou autres traitements statistiques ont été obtenus en utilisant Excel. Avec les données obtenues lors des enquêtes, une régression en fonction de l’âge, la taille du ménage, le genre, le niveau d’éducation ainsi que la religion a été réalisée. Ensuite, pour éviter des problèmes économétriques et pour la fiabilité des résultats, les données ont été arrangées sous forme de logarithme naturel. Pour ce faire, l’expression suivante a été établie: Log(DépJournalière) = c + a log(âge) + b log(taille du ménage) + d log(sexe) + e log(niveau éducation) + f log(religion) + ἐ ἐ : représente les erreurs possibles qui n’ont pas été prises en considération dans l’établissement du model. Pour renforcer ÍNDICE 193 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy la fiabilité des résultats, une régression de type Robuste a été réalisée sur STATA.13 – un logiciel statistique. Quant aux données de pêche, entre autres, tels qu’adoptés par Mahatante, 2008, les types d’embarcation existants, les différents engins de pêche utilisés avec les techniques de pêche, les principales familles capturées avec chacun de ces engins de pêche ont été inventoriés. Ensuite, selon Razanoelisoa, 2008, les trois principaux indicateurs des activités de pêche, à savoir, l’effort de pêche, la capture par unité d’effort (CPUE) et la production par type d’engin ont été évalués. Pour ce faire, soit : Pi : nombre de pêcheurs par pirogue sortie échantillonnée Si : nombre de pirogues sorties échantillonnés ou nombre de sorties échantillonnées Ti : la durée d’une sortie pour une activité de pêche Fj : l’effort de pêche moyen journalier par sortie Fj = ∑Pi/∑Si ∑Ti/∑Si (Unité Fj : pêcheurs/pirogue/sortie) Quant aux évaluations des captures, les formules suivantes ont été adoptées afin d’estimer les captures journalières. Soit CPUEj la capture moyenne journalière par unité d’effort, Gi le ÍNDICE 194 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar poids (kg) de la capture d’une pirogue échantillonnée pour tous les engins utilisés pendant le jour d’enquête: CPUEj = ∑Gi/Fj L’effort de pêche moyen journalier de chacun des trois sites a été évalué en multipliant le nombre de pêcheurs par pirogue par sortie par le nombre total de pirogues. Pour les deux paramètres (efforts de pêche et captures), Anova a été employée pour la comparaison de plusieurs moyennes. Pour ce faire, les moyennes des efforts de pêche journaliers et mensuels et celles des captures prélevées indépendamment dans les trois sites étudiés ont été comparées en utilisant l’analyse de variances de Fisher et le test de Pearson sur Statistica. Ces comparaisons ont été appliquées dans le but de voir si les efforts de pêche et les CPUE sont les mêmes dans tous les sites. Les ressources halieutiques potentielles ont été identifiées en établissant les cinq critères suivants: ressources encore en abondance, haute valeur marchande, appréciées par les consommateurs, pas protégées et cibles des pêcheurs. Pour les données climatiques, les précipitations moyennes annuelles ont été analysées. Vu l’absence de données dans la zone, nous n’avons pas pu étudier tous les trois paramètres ÍNDICE 195 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy qui influenceraient et limitent les activités de pêche, à savoir, les précipitations, la température, et le vent (Mara, 1990), notamment les deux derniers paramètres. Ensuite, nous avons observé les variabilités interannuelles des précipitations depuis 1953, pour le cas d’Ambovombe Androy, en utilisant une analyse temporelle pour identifier les variations (tendances, cycle saisonnier). Enfin, ces données ont été comparées avec les périodes de survenue des « kere » dans le sud ainsi que les périodes d’occurrences du phénomène d’El Nino dans le pacifique pour voir s’il a des liens entre ces phénomènes. 3. Résultats 3.1. Caractéristiques des ménages de pêcheurs dans l’Androy L’étude socio-économique menée auprès des trois villages des pêcheurs nous a permis de mieux appréhender les caractéristiques des ménages. La fig.2 dans la liste des figures nous montre le niveau d’éducation des communautés étudiées. A Ezanavo et Kotoala, respectivement, 73% et 53% de la population adulte sont illettrées contre 16% à Lavanono (fig.2). Comme nous avons mené les enquêtes auprès des adultes, ÍNDICE 196 NIVEAU D'ÉDUCATION EN % Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar 80,00 60,00 40,00 20,00 0,00 Illetrés Ezanavo Niveau primaire Kotoala Niveau secondaire Lavanono Niveau second cycle Niveau Universitaire 5,9 6,72 7,32 étudiées (%) 6,02 7,72 FigureFigure 2: Répartition du niveau d’éducation desd’éducation communautés des étudiées (%) 2 : Répartition du niveau communautés les résultats varient en fonction de l’ancienneté des infrastructures scolaires dans les villages étudiés. EZANAVO KOTOALA LAVANONO LITTORAL ANDROY MADAGASCAR NIVEAU D'ÉDUCATION EN % Les caractéristiques des tailles de ménage sont présentées Figure 3: Répartition des moyennes des tailles de ménages dans les communautés dans la fig.3. Les moyennes des tailles de ménage sont généétudiées (personnes ralement un peu élevées avec une valeur maximale de 7,72 80,00 personnes/ménage pour Ezanavo, 6,02 personnes/ménage à 60,00 40,00 et 7,32 personnes/ménages à Lavanono (fig.3). Kotoala 20,00 0,00 Concernant les activités socio-économiques, la répartition Ezanavo Kotoala Lavanono Niveau primaire Niveau secondaire Niveau Universitaire desIlletrés activités principales dans lesNiveau second cycle communautés étudiées EZANAVO KOTOALA LAVANONO LITTORAL ANDROY 5,9 6,72 7,32 6,02 7,72 Figure 2: Répartition du niveau d’éducation des communautés étudiées (%) MADAGASCAR Figure 3: Répartition des moyennes des tailles de ménages dansde les ménages communautés Figure 3 : Répartition des moyennes des tailles dans les étudiées (personnes communautés étudiées (personnes/ménage) ÍNDICE 197 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy 32% Lavanono 42% 26% 10% Kotoala 27% 63% 3% Ezanavo 63% 33% Autre Pêche Agriculture Figure 4: Répartition des activités les communautés (%) Figure 4 : Répartition desprincipales activitésdans principales dans étudiées les communautés 6% Lavanono étudiées (%) 2% 26% 6% sont présentées sur la fig.4. Bien que la42%pêche ne soit pas en10% core très développée sur le littoral de la région Androy, selon 17% Kotoala 7% 34% 32% ces résultats, à l’exception de Kotoala (27%), elle constitue 32% 5% 42% Lavanono la principale5% activité des communautés étudiées dont 63% à 26% 7% Ezanavo 18% 10% 65% 27% Kotoala Ezanavo et 42% à Lavanono (fig.4). La fig.5 montre la 63% réparRien Commerce Elevage Pêche Agriculture 3% Autre 63% tition des activités secondaires des communautés étudiées. Ezanavo 33% Figure 5: Répartition des activités secondaires dans les communautés étudiées (%) D’après la fig.5, constitue l’activité secondaire Autre l’agriculturePêche Agriculture 3,30 18% 1,10 6% Lavanono 1,25 2 1,59 Figure 4: Répartition des activités principales dans les communautés étudiées (%) 2% 18% 10% KOTOALA EZANAVO Kotoala 17% 26% 6% 42% LAVANONO 7% SPMN SPMI 34% 32% Figure 6: Moyennes des dépenses ménagères journalières des communautés étudiées (MDMJ). SPMN: seuil 5% Ezanavo 5% Rien 7% 18% Autre 65% Commerce Elevage Pêche Agriculture Figure 5 des : Répartition des activités dans (%) les Figure 5: Répartition activités secondaires dans les secondaires communautés étudiées EZANAVO 2 KOTOALA 198 LAVANONO 1,25 ÍNDICE 1,10 1,59 3,30 communautés étudiées (%) SPMN SPMI 10% 17% Kotoala 7% 32% 34% 5% Ressources halieutiques potentielles et propositions 7% 5% 18% d’adaptation aux variabilités climatiques dans l’extrême Sud 65% de Madagascar Rien Autre Commerce Elevage Pêche Agriculture Ezanavo EZANAVO 2 1,25 1,10 1,59 3,30 Figure 5: Répartition des activités secondaires dans les communautés étudiées (%) KOTOALA LAVANONO SPMN SPMI FigureFigure 6: Moyennes des dépensesdes ménagères journalières des communautés étudiéesdes 6 : Moyennes dépenses ménagères journalières (MDMJ). SPMN: seuil communautés étudiées (MDMJ). SPMN: seuil de pauvreté monétaire national et SPMI: seuil de pauvreté monétaire international (en USD). la plus pratiquée des communautés étudiées – 65% pour Ezanavo, 42% pour Lavanono et 32% pour Kotoala. La fig.6 présente les moyennes des dépenses ménagères journalières en USD des communautés dans les trois sites étudiés. D’après la fig.6, Kotoala est le village le plus pauvre parmi les trois qui sont ici étudiés car la MDMJ (Moyenne des Dépenses Ménagères Journalières) est de 1,10 USD qui est inférieure à la fois aux SPMN (Seuil de Pauvreté Monétaire National) et SPMI (Seuil de Pauvreté Monétaire International), tandis qu’Ezanavo, pour une MDMJ de 1,59 USD, ne pourrait pas être classé comme étant pauvre si l’on se réfère au SPMN, il l’est par rapport au SPMI. La MDMJ (3,30 USD) de Lavanono est supérieure par rapport au SPMN et même au SPMI. Ce village ne pourrait donc pas être qualifié de pauvre si l’on se réfère à ces résultats. ÍNDICE 199 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy Tableau 2 : Régression de type Robuste sur les facteurs influençant les dépenses des ménages (Source : résultats de cette étude, 2015) Les facteurs qui influencent les dépenses ménagères ont été étudiés à partir d’une régression Robuste réalisée sur STATA.13. Le tableau 2 présente les résultats obtenus. Concernant les facteurs influençant les dépenses ménagères, les résultats nous apprennent que pour le littoral sud malagasy, les dépenses des villageois sont surtout fonction de l’âge, de la taille du ménage et du niveau d’éducation. Pour justifier cela, l’on se réfère à la colonne P>|t|, si la valeur est supérieure à 5%, la variable correspondante n’est pas conclusive. D’où, rlg1=1.000 veut dire que la religion n’a rien à voir avec les dépenses des communautés étudiées. Et le sexe n’influe pas sur les dépenses des ménages car la valeur de P>|t| correspondant à cette variable est de 0,656 qui est supérieure à 5%. ÍNDICE 200 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar Tableau 3 : Résumé de la situation socio-économique dans la zone d’études Variables/Sites Taille ménage (personnes/ménage) Activité de pêche (%) Dépense journalière (Ar) Taux d’analphabétisme (%) Ezanavo 7,72 Kotoala 6,02 Lavanono 7,32 63,33 4.123,81 73,33 27,12 2.854,72 52,54 42 8.580,00 16,00 (Source : résultats de cette étude, 2015) Les résultats (tableau 3) corroborent les hypothèses que les activités de pêche rapportent beaucoup plus que l’agriculture et l’élevage, chez les communautés étudiées du littoral Androy. En outre, le niveau d’éducation des communautés de pêcheurs dépend de l’ancienneté des infrastructures scolaires existantes; c’est-à-dire, plus l’Ecole Primaire Publique est ancienne, plus le niveau d’éducation est élevé. Par ailleurs, les dépenses journalières suivent également la taille des ménages; c’est-à-dire, les dépenses augmentent avec le nombre de personnes dans un foyer. 3.2. Activités de pêche traditionnelle dans l’Androy La pêche traditionnelle est une activité de pêche utilisant encore des moyens et techniques peu développés, c’est-à-dire, ÍNDICE 201 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy utilisant des engins de pêche précaires et rudimentaires. La précarité de ces moyens constitue la limite de cette activité. Le long du littoral de l’extrême Sud, en 2011, l’étude effectuée par Malagasy Environnement a permis d’évaluer le rapport entre les communautés de pêcheurs et l’ensemble de la population dans l’Androy qui est de 9 442 pêcheurs parmi 700 000 habitants, soit 1,35%. Nos enquêtes nous ont permis d’identifier 4 catégories de pêcheurs : –– Pêcheurs stricts: ceux qui font des activités de pêche uniquement –– Pêcheurs agro-éleveurs: ceux qui priorisent les activités de pêche mais font aussi d’autres activités d’agriculture et d’élevage. –– Agro-éleveurs pêcheurs: ceux qui pratiquent et priorisent les activités d’agriculture et d’élevage mais font aussi de la pêche. –– Pêcheurs mareyeurs: ceux qui sont à la fois pêcheurs et mareyeurs (sous-collecteurs). Ce sont des personnes qui sont à la fois pêcheurs et mareyeurs, des opérateurs locaux à petite échelle qui achètent directement les produits des pêcheurs et les revendent localement, sans ou avec transformation, ou les acheminent ÍNDICE 202 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar dans des marchés voisins. Les mareyeurs sont aussi parfois appelés sous-collecteurs. Avant de parler les sites de débarquement et les moyens d’embarcation, il est à noter que le long du littoral Androy, les côtes sont généralement rudes et la plage est presque étroite et rocheuse. A cause des rochers de grès marins qui frangent la côte sud, l’accès en mer y est très difficile pour la plupart des sites de débarquement. A part le fort courant marin et le changement brusque de la direction du vent provoquant une forte agitation de la mer, cette difficulté d’accès en mer constitue le premier danger auquel font face les pêcheurs. Sur tout le littoral Androy, nous avons pu recenser 60 sites de débarquement dont deux seulement sont facilement accessibles (Ankobabey – Kotoala et Lavanono). (fig.7) Quant aux embarcations, elles sont généralement de deux types si l’on se réfère à la matière première avec laquelle elles sont fabriquées. Il existe les pirogues Vezo qui sont faites en Gyvotia madagascariensis ou « Farafatse » – une plante endémique du sud-ouest malagasy, et les pirogues Ntandroy qui sont fabriquées à partir d’Adensonioides madagascariensis ou « Daro » – une plante locale dans la vallée de Mandrare. Les pirogues en « Farafatse » sont présentes sur presque tout le long du littoral, tandis que celles en « Daro » se ren- ÍNDICE 203 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy Figure 7 : Carte montrant les sites de débarquement sur le littoral Androy contrent surtout sur la partie est, en particulier à Ezanavo. Le tableau 4 nous permet de bien comprendre les avantages et les inconvénients de chacune de ces pirogues. En analysant les caractéristiques de ces deux types de pirogues, on peut en déduire qu’elles ne sont pas très adaptées aux conditions de la mer dans cette région (mer agitée, vent fort, sites de débarquement rocheux…). Concernant ÍNDICE 204 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar Tableau 4 : Caractéristiques de chacun des deux types de pirogues Caractéristiques Pirogue (7) Vezo Pirogue Tandroy Matière première « Farafatsy » ou Gyvotia madagascariensis « Daro » ou Adansonioides madagascariensis Longueur 5 à 10 m 3à7m Largeur 0,50 à 1 m 0,30 à 0,60 m Densité Très légère comme un liège Légère mais pas comme un liège Vitesse en mer Très vite Moyennement vite Fond (base) En « V » mais légèrement aplatie En « U » et aplatie présentant souvent des bosses et/ou creux Avantages Facile à manier, à pagayer, moins de force de frottement, flottabilité assurée même pleine d’eau, souple et résistante Maniable, un peu lourd à pagayer suite à la force de frottement, flottabilité assurée même pleine d’eau, moins souple et moins résistante Inconvénients --- Pas faite pour la pêche au large Durée de vie 2 à 5 ans 1 à 3 ans Disponibilité de matière première Rare et ressource en Moins rare et l’on peut bois éloignée (espèce les trouver dans la en voie de disparition) vallée de Mandrare Prix Ar 150 000 à 600 000 Ar 50 000 à 150 000 (Source : résultats de cette étude, 2015) ÍNDICE 205 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy les matériels de pêche utilisés, sur le littoral Androy, on peut rencontrer presque tous les engins utilisés par les pêcheurs Vezo, sauf les sennes de plage et les filets en moustiquaire. Le tableau 5 nous décrit un à un les engins utilisés par les Ntandroy. Tableau 5 : Caractéristiques de chacun des engins de pêche utilisés dans l’Androy Engins de pêche Caractéristiques Casier (pour la pêche à la langouste) Longueur: 30 - 50 cm; largeur: 20 – 30 cm; hauteur : 20 – 30 cm, maille: 3 - 5mm. Originellement, cet engin a été conçu seulement à partir d’une liane de Fort-dauphin, la dénommée « Vahipike ». Mais, aujourd’hui, vu la rareté de la matière première, les pêcheurs utilisent d’autres espèces de plante pour en confectionner telles les « Vahe » et « Nato » que les pêcheurs de Fort-dauphin appellent « Kipa » – la nasse. Sur ce littoral, nous avons vu des casiers qui sont faits à partir des cordes nylons mais dont l’ossature est faite en bois souple. Les pêcheurs nous ont expliqués que c’est l’appât qui attire la langouste. Pour cela, ils ont ajouté que la nature ou la qualité des matières premières avec lesquelles on fabrique les casiers ne compte pas beaucoup. ZZ (nom donné par les pêcheurs car ils ne savent pas prononcer le nom de l’Organisme allemand GTZ – GIZ actuel, qui a distribué ce gros filet maillant au requin) Longueur: 100 - 200 m ou plus; largeur: 1,5 – 3 m; maille: 80 - 150mm. Comme tous les filets, le ZZ dispose de lests et de flotteurs mais dont la maille (80 à 150 mm) et les cordes sont plus grandes que celles du filet maillant. Il est utilisé pour capturer les requins et les tortues marines en haute mer, c’est-à-dire, au-delà du récif barrière (8). Sa longueur varie suivant la disponibilité financière du pêcheur mais, il peut atteindre 200 m ou plus. ÍNDICE 206 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar Jarifa Longueur: 150 – 300 m ou plus; largeur: 1,5 – 3 m; maille: 100 - 150mm. Comme le ZZ, le Jarifa est aussi utilisé pour la capture des requins et des tortues marines. Mais, la seule différence est leur dimension. Le Jarifa est beaucoup plus large que le ZZ. Filet maillant Longueur: 150 – 300 m; largeur: 1,5 – 3 m; maille: 35 60mm. C’est un filet toujours confectionné à partir de fil en nylon. Ses dimensions varient suivant la disponibilité financière des pêcheurs. Mais, en général, il mesure environ 150 m de long, ou même plus, et de 3 à 4 m de chute. La maille de ce type d’engin de pêche varie entre 20 à 40 cm suivant les espèces cibles. Pour que le filet tienne verticalement, les pêcheurs utilisent des flotteurs en bois qui traversent sa partie supérieure et des lests en plombs sont disposés dans la partie inférieure. Ces accessoires (plombs et flotteurs) sont disposés le long du filet par intervalle de 25 cm. Ligne Longueur: 10 – 30 m et qui se termine par un ou plusieurs hameçons munis d’appât. Palangrotte Longueur: 30 à 100 m ou plus, munie des hameçons avec des appâts tout au long de sa longueur. Harpon Une sorte de sagaie – une arme en forme de flèche dont la pointe a deux crocs recourbés et qu’on utilise pour pêcher les gros poissons. Longueur: 1,5 – 2,5 m dont la manche est faite en bois ou avec du fer. L’une des extrémités est très pointue. Fusil à poisson C’est un système mécanique comme une catapulte mais dont la balle est une tige possédant une tête comme celle du harpon et le support possède une sorte de détente comme le fusil. Cette tige de fer est reliée à son bout par une ficelle qui la relie au support. Les pêcheurs plongent et visent les gros poissons. Souvent les pêcheurs utilisateurs de cet engin portent un équipement de plongée en apnée (tels que: masque, palmes, tuba, combinaison) (Source : résultats de cette étude, 2015) ÍNDICE 207 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy Le tableau 5 nous informe qu’aucun engin destructeur n’est utilisé par les pêcheurs Ntandroy. Les sennes de plage et les filets en moustiquaire ne sont pas utilisés par les pêcheurs car ces derniers ne signalent pas le passage des « Tove » - Stolephorus indicus (Van Hasselt, 1823), et « Geba » – Herklotsichtys quadrimaculatus (Ruppel, 1837) – petits poissons pélagiques, dans cette zone. En outre, l’écosystème marin existant, constitué quasiment par des fonds rocheux sur les côtes, ne leur permet pas d’utiliser ces types d’engins, notamment, les sennes de plage. Toutefois, d’autres petits poissons pélagiques tels que les « Sihely » – Rastrelliger kanagurta, Cuivier, 1816 et les « valahara » – Trachurus delagoa passent quelques fois dans la zone. Mais, les pêcheurs utilisent des filets maillants de maille un à deux doigts pour les capturer. Quant aux ressources exploitées, les pêcheurs du sud capturent principalement trois groupes de produits qui sont les poissons, les crustacés et les mollusques mais les autres produits comme l’échinoderme et l’algue, etc. sont aussi pêchés. Après les analyses qualitatives de la composition des captures dans les trois sites, la figure 8 nous montre la répartition des ressources marines exploitées dans l’Androy. La figure 8 nous apprend que ce sont les poissons (52%) et les langoustes (34%) qui sont les principales ressources ÍNDICE 208 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar Autres (tortues, dauphins…) 2% Poulpe 3% Holothurie 5% Coquillage 3% Algues 1% Poissons 52% Langoustes 34% Figure 8: Répartition des ressources marines exploitées sur le littoral Androy Figure 8 : Répartition des ressources marines exploitées sur le littoral Androy Autres Thonidae 18% 15% Sparidae les plus 7% exploitées dans le sud malagasy. Elles constituent Carcharinidae Autres (tortues, dauphins…) Poulpe 19% 2% également les principales sources de revenu des communauSerranidae 3% 9% Holothurie tés5% de pêcheurs en matière de pêche. Source d’alimentation Lethrinidae Lutjanidae Algues 13% 1% et Coquillage de19%revenus substantiels pour les communautés littorales 3% Figure 9:(Mahatante, Répartition des familles poissons capturés sur le littoral Androy 2008, deles principales familles capturées sont, Poissons Langoustes 52% entre autres, Lethrini34%Carcharinidae, Lutjanidae, Thonidea, dea, Serranidea et Sparidae (fig. 9). Figure 8: Répartition des ressources marines exploitées sur le littoral Androy Autres 15% Thonidae 18% Sparidae 7% Carcharinidae 19% Serranidae 9% Lethrinidae 13% Lutjanidae 19% Figure 9: Répartition des familles de poissons capturés sur le littoral Androy Figure 9 : Répartition des familles de poissons capturés sur le littoral Androy ÍNDICE 209 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy D’après ces résultats, 4 familles sont les plus capturées par les pêcheurs de l’Androy. Ce sont les carcharinidés (19%), lutjanidés (19%), thonidés (18%) et lethrinidés (13%) L’on note que tout au long de l’année, parmi les 3 saisons (Asara, Asotry et Faosa), c’est surtout pendant l’Asara – saison chaude et pluvieuse (Novembre – Mars) qu’on rencontre le plus d’espèces. L’observation journalière de la météo du mois d’août 2011 au mois de décembre 2012, dans les trois sites d’études (Ezanavo, Kotoala et Lavanono) a aussi permis de faire ressortir les efforts de pêche mensuels exacts des pêcheurs pendant cette période (fig.10), c’est-à-dire, le nombre de jours mensuels de sortie de pêche. En analysant les données de cette période, les pêcheurs ont pu sortir pendant 23 jours à Lavanono et 21 jours chacun Nombre de jours sortis mensuels (j/mois) 25 20 15 10 5 0 Ezanavo Kotoala Lavanono Figure 10: 10 Variabilité des efforts pêche mensuels dansmensuels les trois sitesdans de débarquement Figure : Variabilité desdeefforts de pêche les trois (période : août 2011 – décembre 2012) Effort de pêche moyen journalier (pêheurs/sortie/jour) sites de débarquement (période : août 2011 – décembre 2012) ÍNDICE 143 100,8 21070,6 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar pour Ezanavo et Kotoala pendant le mois de décembre 2011. Tandis que les mois de janvier, juillet et octobre 2012 étaient les mois les plus durs car, dans un mois, 2 à 5 jours seulement étaient favorables à la sortie en mer pour la pêche dans les trois sites. En tout, pendant cette période, pour toute la zone d’études, l’effort de pêche moyen annuel était de 134 jours sortis, soit 37% des jours de l’année ou un peu plus du 1/3 des jours de l’année. Avec ces résultats, l’on peut déduire l’effort de pêche moyen mensuel dans la zone qui est de 11,17±5,86 jours de sortie/mois. Enfin, pour vérifier statistiquement si les efforts de pêche sont les mêmes dans tous les sites d’étude, l’analyse de variance de FISHER a été utilisée. La variance expérimentale, F, est de 0.438 ; l’hypothèse les efforts de pêche mensuels dans les sites d’études sont les mêmes est vérifiée. L’on peut en conclure que les efforts de pêche mensuels dans les sites d’études sont les mêmes. Autrement dit, il n’y a pas de différence significative entre les moyennes des efforts de pêche mensuels dans les trois sites d’études. ÍNDICE 211 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy 3.3. Ressources halieutiques potentielles Nous avons établi un certain nombre de critères qui vont mieux nous permettre d’identifier les ressources halieutiques potentielles : –– Ressources encore en abondance et ciblées par les pêcheurs (permanentes ou saisonnières) –– Ressources non protégées localement et dans la région ouest de l’océan indien –– Ressources de haute valeur marchande Pour ce faire, avec l’aide des pêcheurs, les ressources du tableau 6 ont été identifiées, mise à part la langouste (9). Tableau 6 : Les ressources halieutiques potentielles identifiées Ressources (noms commerciaux) Thon Familles Thonidae, scombridae Vivaneau Lutjanidae Requin Carcharinidae Observation C’est une ressource encore en abondance mais sous-exploitée et de très haute valeur marchande. Elle rassemble beaucoup d’espèces qui constituent, dans la plupart des cas, la majorité des captures. Cette ressource est encore en abondance, sous exploitée et de haute valeur marchande. C’est une ressource très ciblée par les pêcheurs utilisant des gros filets à cause de la cherté de ses ailerons. (Source : résultats de cette étude, 2015) ÍNDICE 212 Nombre de jo sortis mensu (j/mois) 20 15 10 5 0 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar Ezanavo Kotoala Lavanono Figure 143 100,8 70,6 25 20 1115: Efforts 10 5 0 Nombre de jours CPUE/pêcheur/sortie (kg) sortis mensuels (j/mois) Effort de pêche moyen journalier (pêheurs/sortie/jour) Figure 10: Variabilité des efforts de pêche mensuels dans les trois sites de débarquement (période : août 2011 – décembre 2012) Ezanavo Kotoala Lavanono de pêche journaliers (pêcheurs/sortie/jour) Figure 11 : Efforts de pêche journaliers (pêcheurs/sortie/jour) 64,26 Effort de pêche moyen journalier (pêheurs/sortie/jour) 36,65 31,65 très élevé à Lavanono L’effort de pêche23,50 moyen journalier est 22,92 21,00 18,26 11,71 8,17 (143 pêcheurs/sortie/jour), tandis Ezanavo Kotoalaqu’il est de 100,8 Lavanonopêcheurs/ Figure 10: Variabilité des efforts et de pêche dans les trois sitesLavanono de àdébarquement sortie/jour àEzanavo Ezanavo 70,6mensuels pêcheurs/sortie/jour Kotoala Kotoala (période : août 2011 –Thon décembre 2012) Réquin Vivaneau (fig.11). Le test de Pearson sur STATISTICA utilisé a montré Figure 12: CPUE par pêcheur des ressources potentielles dans les trois sites que ces efforts de pêche moyens journaliers diffèrent signifi143 (kg/pêcheur/sortie). 100,8 cativement dans son ensemble au seuil de 0,05. Thon70,6 10,00 7,08 La fig.12 présente les CPUE des ressources potentielles 5,00 pour tous lesEzanavo engins par pêcheur dans les sites d’études. Les Kotoala Lavanono 0,00 CPUE/pêcheur/sortie (kg) Figure 11 : Efforts de pêche journaliers (pêcheurs/sortie/jour) 9,24 7,44 Vivaneau 64,26 Réquin CPUE moyennes par pêcheur dans la zone d'études 36,65 31,65 23,50 22,92 21,00 18,26 la zone Figure 13: CPUE moyennes journalières par pêcheur des ressources potentielles dans 11,71 8,17 d’études (kg/pêcheur/sortie). Ezanavo Kotoala Thon Lavanono Réquin Vivaneau Figure 12: CPUE par pêcheur des ressources potentielles dans les trois sites Figure 12 : CPUE par pêcheur des ressources potentielles dans les (kg/pêcheur/sortie). p. 15 trois sites (kg/pêcheur/sortie). Thon 10,00 ÍNDICE 7,08 213 5,00 7,44 0,00 9,24 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy CPUE à Kotoala sont supérieures à celles des deux autres sites car la pression y est moindre (15 à 20 pirogues pour tout le village et hameaux autour) alors que l’accès en mer est facile (fig. 12). Pour vérifier statistiquement si les CPUE de chacune des ressources étudiées sont les mêmes dans les trois sites d’études, des analyses de variances de FISHER ont été effectuées. Après avoir appliqué le test, on a trouvé qu’il n’y a pas de différence significative entre les moyennes des captures de chacune des trois ressources étudiées (thon, requin et vivaneau) dans les sites d’étude au seuil de 0,05. En conséquence, l’on peut en conclure que la distribution du thon, du requin et du vivaneau est la même dans la zone d’études. Dans la zone d’études, les CPUE moyennes journalières par pêcheur pour tous les engins sont présentées dans la fig.13. En termes de qualité, le requin (9,24kg/pêcheur/sortie) est très pêché dans la zone pour ses ailerons mais la chair est aussi consommée par les communautés. Mais, le vivaneau (7,44kg/pêcheur/sortie) et le thon (7,08kg/pêcheur/ sortie) sont aussi très capturés (fig. 13). Le test de Pearson sur STATISTICA a montré qu’il n’y a pas de différence significative entre les moyennes journalières des CPUE de ces trois ressources étudiées au seuil de 0,05. ÍNDICE 214 CPUE/pêcheur/s (kg) 36,65 23,50 31,65 21,00 22,92 18,26 8,17 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud Ezanavo Kotoala Lavanono de Madagascar Thon Réquin Vivaneau 11,71 Figure 12: CPUE par pêcheur des ressources potentielles dans les trois sites (kg/pêcheur/sortie). Thon 10,00 7,08 5,00 7,44 0,00 Vivaneau 9,24 Réquin CPUE moyennes par pêcheur dans la zone d'études Figure 13: CPUE moyennes journalières par pêcheur des ressources potentielles dans la zone 13 : CPUE moyennes journalières par pêcheur des d’étudesFigure (kg/pêcheur/sortie). ressources potentielles dans la zone d’études (kg/pêcheur/sortie). La fig.14 suivante montre les variabilités des moyennes menp. 15 suelles des CPUE pour tous les engins par pêcheur dans les sites d’étude. Pour les ressources thonières, l’on observe deux pics de captures qui sont les mois de décembre (période chaude et pluvieuse) et d’avril (fin de la période chaude et pluvieuse et début de la période fraîche) (fig.14). Cepen- CPUE/pêcheur/sortie 25,00 20,00 15,00 10,00 5,00 0,00 CPUE/pêcheur Ezanavo CPUE/pêcheur Kotoala CPUE/pêcheur Lavanono Figure 14: Variabilité mensuelle des CUPE du thon dans les sites d’étude (kg/pêcheur/sortie). CPUE/pêcheur/sortie Figure 14 : Variabilité mensuelle des CUPE du thon dans les sites 35,00 d’étude (kg/pêcheur/sortie). 30,00 25,00 20,00 15,00 10,00 5,00 0,00 ÍNDICE 215 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy dant, l’on observe également que pour la saison fraîche (mai, juin et juillet), la capture des thons continue toujours avant de chuter le mois d’octobre (début de la période sèche, chaude et venteuse). CPUE/pêcheur/sortie Enfin, la fig.15 nous montre également la variabilité des captures des thons car l’on peut bien observer la différence entre les captures pour les mois de novembre et décembre de l’année 2011 et ceux de l’année 2012. Les requins sont très pêchés les mois de décembre et mai. Les pêcheurs arrêtent l’uti lisation des filets maillants aux requins (ZZ et Jarifa) du mi-mai 25,00 à mi-novembre, à cause du passage des baleines (fig.15). 20,00 Les10,00 captures pour les vivaneaux présentent trois pics qui 5,00 surviennent en décembre, avril et août (fig.16). La proportion 0,00 des CPUE des ressources potentielles par rapport aux captures totales dans les sites d’étude est présentée par la fig.17. CPUE/pêcheur Ezanavo CPUE/pêcheur Kotoala CPUE/pêcheur Lavanono 15,00 CPUE/pêcheur/sortie Figure 14: Variabilité mensuelle des CUPE du thon dans les sites d’étude (kg/pêcheur/sortie). 35,00 30,00 25,00 20,00 15,00 10,00 5,00 0,00 CPUE/pêcheur Ezanavo CPUE/pêcheur Kotoala CPUE/pêcheur Lavanono CPUE/pêcheur/sortie Figure 15: Variabilité mensuelle des CPUE du requin dans les trois sites d’étude Figure 15 : Variabilité mensuelle des CPUE du requin dans les trois (kg/pêcheur/sortie). 15,00 sites d’étude (kg/pêcheur/sortie). 10,00 5,00 ÍNDICE 0,00 216 CPUE/pêcheur/ CPUE/pêcheur/ 25,00 15,00 20,00 15,00 10,00 10,00 5,00 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar CPUE/pêcheur Ezanavo CPUE/pêcheur Kotoala CPUE/pêcheur Lavanono 5,000,00 0,00 CPUE/pêcheur Ezanavo CPUE/pêcheur Kotoala CPUE/pêcheur Lavanono Figure 15: Variabilité mensuelle des CPUE du requin dans les trois sites d’étude (kg/pêcheur/sortie). Figure 14: Variabilité mensuelle des CUPE du thon dans les sites d’étude (kg/pêcheur/sortie). CPUE/pêcheur/sortie CPUE/pêcheur/sortie 15,00 35,00 30,00 10,00 25,00 20,00 5,00 15,00 10,00 0,00 5,00 0,00 CPUE/pêcheur Ezanavo CPUE/pêcheur Kotoala CPUE/pêcheur Lavanono CPUE/pêcheur Kotoala Figure 16: CPUE/pêcheur Ezanavo Variabilité mensuelle des CPUE du vivaneau dans les troisCPUE/pêcheur Lavanono sites d’étude Figure 16 : Variabilité mensuelle des CPUE du vivaneau dans les (kg/pêcheur/sortie). trois sites d’étude (kg/pêcheur/sortie) Figure 15: Variabilité mensuelle des CPUE du requin dans les trois sites d’étude Thon Autres (kg/pêcheur/sortie). 21% 41% CPUE/pêcheur/sortie 15,00 toute la zone d’étude, le thon et le requin sont les plus Pour Requin Vivaneau capturés, suivis par le vivaneau (fig.17). Ces données justi10,00 21% 17% fient 5,00 le choix de ces trois ressources parmi les ressources Figure 17: Proportion des CPUE des ressources potentielles par rapport aux captures totales halieutiques potentielles. La fig.18 présente les variations 0,00 dans la zone d’études. saisonnières des captures des ressources potentielles. Pour l’ensemble de la zone d’étude, quantitativement, ce sont les CPUE/pêcheur Ezanavo CPUE/pêcheur Kotoala CPUE/pêcheur Lavanono requins qui sont les plus pêchés pendant les deux premières Figure 16: Variabilité mensuelle des CPUE du vivaneau dans les trois sites d’étude (kg/pêcheur/sortie). p. 16 Thon 21% Autres 41% Requin 21% Vivaneau 17% Figure 17: Proportion des CPUE des ressources potentielles par rapport aux captures totales Figure 17 : Proportion des CPUE des ressources potentielles par dans la zone d’études. rapport aux captures totales dans la zone d’études. ÍNDICE 217 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy 0,00 6,07 6,70 6,89 11,40 7,77 6,77 9,35 16,30 ASARA ASOTRY CPUE/pêcheur (thon) FAOSA CPUE/pêcheur (requin) CPUE/pêcheur (vivaneau) zone d’études (kg/pêcheur/sortie). 20,00 25,00 20,00 Effort de pêche (jours de sortie/mois) CPUE (kg/pêcheur/sortie) Figure 18: Variation saisonnière des ressources potentielles dans la zone d’études Figure 18 : Variation saisonnière des ressources potentielles dans la (kg/pêcheur/sortie). saisons – « asara » et « asotry », tandis que les deux15,00 autres 10,00 10,00 ressources (thon et vivaneau) sont presque capturées pen5,00 5,00 dant0,00toute l’année (fig. 18). 0,00 11,40 16,30 15,00 1,5 (kg/pêcheur/sortie). Effort de pêche (jours de sortie/mois) Précipitations (mm/an) El Nino selon catégorie CPUE (kg/pêcheur/sortie) (faible, modéré, fort, très fort) 0,00 6,07 6,70 6,89 7,77 6,77 9,35 L’étude de la tendance captures/efforts de pêche des resCPUE/pêcheur (thon) CPUE/pêcheur (réquin) CPUE/pêcheur (vivaneau) Effort de pêche zone d'études sources potentielles est montrée dans la fig.19. Pour l’enFigure 19: Tendance CPUE/Efforts de pêche mensuels des ressources potentielles dans la zone d’études. semble deA S Ala zone d’études,A Sl’on peut observer Fque, généraRA OTRY AOSA 2,5 lement, CPUE/pêcheur (thon) les captures augmentent avec l’effort de pêche 1400 (fig. CPUE/pêcheur (requin) CPUE/pêcheur (vivaneau) 1200 2 19). L’on remarque également les variabilités mensuelles et 1000 Figure 18: Variation saisonnière des ressources potentielles dans la zone d’études 800 20,00 1 25,00 600 15,00 20,00 400 0,5 15,00 200 10,00 0 10,00 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 5,00 0,00 5,00 Précipitations moyennes annuelles Survenue El Nino selon sa catégorie 0,00 0 Figure 20 : Variabilité inter annuelle de précipitations à Ambovombe Androy et El Nino (Sources:CPUE/pêcheur (thon) Direction Générale deCPUE/pêcheur (réquin) la Météorologie – DGM, 2009, CNA, 2014 et site web NOAA, 2015) CPUE/pêcheur (vivaneau) Effort de pêche zone d'études Liste des Figure 19:tableaux Tendance CPUE/Efforts de pêche mensuels des ressources potentielles dans la Figure 19 : Tendance CPUE/Efforts de pêche mensuels des zone d’études. Tableau 1: Monographie simple des sites choisis Nino selon catégorie , modéré, fort, très fort) Ezanavo 2 Kotoala ÍNDICE Lavanono 1,5 1 ressources potentielles dans la zone d’études. 7 Population 350 500 760 Ménages 218 80 110 180 Pêcheurs 120 190 330 1400 Pirogues 30 1200 à 35 15 1000 à 20 45 800 à 50 Précipitations (mm/an) Village 2,5 (Source: enquêtes auprès des Chefs Fokontany, 2014) 600 400 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar inter annuelles des captures (cas des captures pour les mois d’octobre, novembre et décembre 2011 et celles de l’année suivante pour la même période). A cause d’une alternance de pluie et de vent, les pêcheurs n’ont pas pu sortir les mois de janvier, février et mars 2012 et suite au passage régulier du vent « tiomena » en période « faosa ». Il en a été de même également pour les mois de septembre, octobre et novembre 2012. 3.4. ariabilités climatiques dans l’Extrême Sud de Madagascar L’extrême sud de Madagascar est très réputé comme étant une région sèche où règne la famine de manière plus ou moins régulière. La sécheresse y constitue le principal risque climatique (tableau 7). Le Dipôle de l’Océan Indien (RiddeTableau 7 : Principaux risques climatiques pour le Sud malgache Aléas Sécheresse Fréquence 1968 à 1999, 4 épisodes de sécheresse (* : mais 14 de 1896 – 2014) Zones Régions Sud et Sud-Ouest Groupes Petits exploitants agricoles, petits éleveurs Secteurs (10) Agriculture et élevage (Source: extrait du tableau montrant les principaux risques du changement climatique à Madagascar, PANA, 2006 et * : résultats de la présente étude) ÍNDICE 219 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy 0,00 6,07 6,70 6,89 11,40 7,77 9,35 6,77 16,30 rinkohf et al., 2013) entrainerait l’intensification du vent dans la partie sud de la Grande Ile qui est très venteuse pendant les mois d’août en octobre – la période correspondant à la saison sèche, chaude et venteuse, la dénommée ASARA ASOTRY F A Olocalement SA « faosa ». Cependant, depuis plusieurs décennies, les auCPUE/pêcheur (thon) CPUE/pêcheur (requin) CPUE/pêcheur (vivaneau) tochtones ont remarqué la présence du vent presque pendant Figure 18: Variation saisonnière des ressources potentielles dans la zone d’études (kg/pêcheur/sortie). toutes les saisons. 20,00 25,00 Effort de pêche (jours de sortie/mois) CPUE (kg/pêcheur/sortie) Si 15,00 la moyenne annuelle des précipitations est de 20,00 505,70 15,00 mm/an à Ambovombe Androy, pour les 30 dernières an10,00 10,00 nées, le 5,00 la fig.20 présente les anomalies climatiques dans 5,00 0,00 0,00 sud (exemple du cas d’Ambovombe Androy). Depuis 1953 jusqu’en 2014, 8 périodes de famines ont été répertoriées CPUE/pêcheur (thon) CPUE/pêcheur (vivaneau) Effort de pêche zone d'études (1959-1960, 1970, CPUE/pêcheur (réquin) 1980-1982, 1985-1986, 1991-1992, 2003, Figure 19: Tendance CPUE/Efforts de pêche mensuels des ressources potentielles dans la zone d’études. 1400 Précipitations (mm/an) 1200 2 1000 1,5 800 1 600 400 0,5 0 200 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 El Nino selon catégorie (faible, modéré, fort, très fort) 2,5 Précipitations moyennes annuelles 0 Survenue El Nino selon sa catégorie Figure 20 : Variabilité inter annuelle de précipitations à Ambovombe Androy et El Nino FigureDirection 20 : Variabilité annuelle de2009, précipitations à Ambovombe (Sources: Générale de lainter Météorologie – DGM, CNA, 2014 et site web NOAA, 2015) Androy et El Nino (Sources : Direction Générale de la Météorologie – DGM, 2009, Tableau 1: Monographie simple des sites choisis CNA, 2014 et site web NOAA, 2015) 7 Liste des tableaux Village Ezanavo Kotoala Lavanono ÍNDICE Population 350 500 760 Ménages 220 80 110 180 Pêcheurs 120 190 330 Pirogues 30 à 35 15 à 20 45 à 50 (Source: enquêtes auprès des Chefs Fokontany, 2014) Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar 2006 et 2014) (fig. 20 petits cercles noirs et blanc à l’intérieur). On observe également une tendance en baisse des précipitations, notamment, pour les 20 dernières années. La fig.20 informe également que la survenue du kere n’est forcément causée par des faibles précipitations mais surtout de la répartition temporelle et spatiale de ces dernières. Par exemple, l’Androy n’a reçu que 285,8mm de pluies en 2008 mais les communautés n’ont pas connu du kere tandis que l’année 2014, il y avait une pluie de 499,4mm/an alors que cette région a connu une période de kere car il ne pleuvait que 28 jours. Le tableau 8 montre les kere qui sont survenus dans l’Androy depuis 1896. Tableau 8 : Les « kere » qui sont survenus dans l’Androy avec leurs caractéristiques Période Caractéristiques Période de décalage de kere (années) *1896 Précipitations: 97 mm en 21 mois *Avril 1902 en Décembre 1903 Précipitations: 47 mm en 15 mois 6 1928 Causée par une longue sécheresse et l’introduction de la cochenille Dactylopius, Précipitations: 650 mm 25 1931 Précipitations: 391 mm et a causé l’émigration d’un grand nombre de la population 3 ÍNDICE 221 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy 1943 Précipitations: 293 mm. Ce kere a été appelé “Mozatse” (nom d’une personne qui l’a marquée) 12 *Mars 1948 en Novembre 1949 Précipitations: 160 mm en 20 mois 5 *Février 1959 en Juin 1960 Précipitations: 118 mm en 17 mois (qui est appelé localement Betsimeda – mode de cuisson de la viande typique chez les Ntandroy, car les gens ont mangé leurs bétails) 10 *1970 Précipitations: 26 mm en 11 mois (Kere zara mofo – littéralement : famine distribution de pain, c’est-à-dire marquée par la distribution de pains) 10 1980 – 1982 Santira vy, malalake akanjo (littéralement: ceinture de fer, vêtements lâches) 10 *1985 – 1986 Beaucoup de morts (Tsy mitolike – littéralement: qui ne se tourne pas) 3 *Avril 1991 en Octobre 1992 Précipitations: 90 mm en 19 mois (appelé : S.O.S ou hesoheso chez les Ntandroy) 5 2003 (marquée par les opérations de téléthon national) 11 2006 (Kere arikatoke – famine tout autour) 4 2014 Causée par des précipitations de courte durée (28 jours sur 365) malgré les 499,4 mm de pluie 8 (Sources: *ORSTOM/DMH/CNRE et Lebigre & Reaud-Thomas, 1995, Randriamanantsara, 2010 et résultats de cette étude, 2014) Ainsi, la fig.20 informe également que la plupart des survenues d’El Nino ne provoquent pas forcément du kere (fig.20). ÍNDICE 222 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar Pourtant, l’on remarque que les kere sont soit précédés par l’occurrence d’El Nino (1959-1960, 1970, 1980 et 2003) ou coïncident avec ce dernier (1982, 1986, 1991 et 2006). Cette situation confirme encore qu’El Nino a une corrélation négative avec les précipitations dans le Sud (Raholijao, 2009). Enfin, les périodes d’occurrences de ces « kere » sont très variables avec des intervalles de temps entre deux kere de 3 à 5 ans, 6 à 8 ans, 10 à 12 ans et 25 ans (tableau 7, 3è colonne). Ces données témoignent en conséquence les variabilités climatiques dans le sud malgache. 4. Discussions A Madagascar, les dépenses bihebdomadaires des pêcheurs (Ar71.662±4 298 à Ankilibe Toliara, MacClanahan et al., 2014 et Ar120.120,00 à Lavanono) et des pêcheurs agro-éleveurs (Ar57.733,33 à Ezanavo) sont toujours supérieures à celles des agro-pêcheurs (Ar53.500±16.055 à Imorona Mananara Nord, MacClanahan et al., 2014 et Ar39.966,10 à Kotoala. Ces données confirment l’hypothèse que les pêcheurs et les pêcheurs agro-éleveurs (cas d’Ankilibe Toliara, Lavanono et Ezanavo) rapportent plus que les agro-pêcheurs (cas d’Imorona Mananara Nord et Kotoala). Ce qui peut expliquer la capacité de résilience un peu élevée des communautés du ÍNDICE 223 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy littoral sud malgache par rapport aux agro-éleveurs – tels que constatés lors des survenues des famines dans le sud. La taille de ménage est généralement élevée dans notre zone d’étude avec une moyenne de 6,72 personnes/ménage alors que la nationale est de 5,9 personnes/ménage, et celle de Mananara Nord de 4,97 personnes/ménage (Mahatante, 2010). Cette situation dans le sud est due à la pratique du mariage précoce, mais également à la non pratique de planning familial suite au faible niveau d’éducation de la population en général. A ce dernier s’ajoute aussi la philosophie qui qualifie les descendants comme étant une richesse avant tout et comme des cadeaux divins. En outre, l’effort de pêche est faible car si, à Anakao dans la région sud-ouest, il a été estimé à 318 jours/an (Razanoelisoa, 2008), dans notre zone étude, il est seulement de 134 jours/an. Ainsi, l’on a constaté que, si selon Razanoelisoa, 2008, il y a deux pics de capture dont un en février et un autre en août dans la région sud-ouest, dans le littoral boréal malgache, de manière générale, elle varie en fonction du climat. Cependant, pour tous les engins, la CPUE est largement supérieure dans notre zone d’études avec 17,18kg/pirogue/sortie contre 12,81kg/sortie/pirogue, en saison chaude, à Ankilibe (Mahatante, 2008). ÍNDICE 224 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar Lors de cette étude, l’on a pu recenser 413 pirogues pour tout le littoral Androy, contre près de 900 pirogues pour le seul village d’Ankilibe – région Sud-ouest. Ces données justifient, entre autres, la sous-exploitation des ressources halieutiques dans le sud malgache alors qu’on parle de 54.000 tonnes de gros poissons pélagiques contre 9.000 t et 14.000 t pour le Sud-est et le Nord-est et 15.000 tonnes de petits poissons pélagiques (Krakstad et al., 2008). Enfin, selon Demoraes, 1999 et Raholijao, 2009, la période d’occurrence d’El Niño qui est de 2-7 ans est devenue plus courte au cours des dix/quinze dernières années à cause du réchauffement global alors que ce phénomène présente des corrélations négatives avec les précipitations dans le sud et aggrave la sécheresse (Raholijao, 2009). Cette situation est alarmante pour la population du sud de Madagascar et elle doit en conséquence s’y préparer et s’y adapter. Néanmoins, El Niño n’est pas obligatoirement responsable de la sécheresse car l’on observe qu’il n’y a pas de famines dans beaucoup de périodes de survenue d’El Niño. D’autres facteurs devraient être pris en compte, notamment, les phénomènes d’upwelling (Bemiasa, 2009 et Voldsund, 2011) et l’Indian Ocean Dipole – IOD (Ridderinkhof et al., 2013). ÍNDICE 225 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy 5. Conclusion En conclusion, dans la zone littorale Androy, une variation de 1% de l’âge de la population entraine une augmentation de 0.29 (voir coef.) sur leur dépense. Ainsi, le facteur le plus déterminant de la dépense villageoise est la taille du ménage car une augmentation de 1% de cette dernière entraine une hausse de 0.53% au niveau de sa dépense. Ensuite, le niveau d’analphabétisme est négativement colinéaire aux dépenses, c’est-à-dire, si le taux d’alphabétisme augmente de 1%, les dépenses diminuent de 0.2%. D’où l’appauvrissement de la zone concernée par le problème d’analphabétisme, à l’instar du village d’Ezanavo. En outre, concernant les activités de pêche, si l’on se réfère aux catégories de pêcheurs et aux dépenses ménagères, l’on peut bien dire que la pêche tient une place primordiale dans le revenu des communautés de pêcheurs du littoral Androy. Cette situation nous apprend que, chez les communautés littorales, la pêche rapporte beaucoup plus que les autres activités principales des paysans malagasy (agriculture et élevage). De plus, la situation des ressources potentielles identifiées est encore prometteuse car les CPUE sont encore élevées ÍNDICE 226 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar alors que les pressions sont moindres. L’on peut dire alors que ces ressources sont sous-exploitées et leur exploitation rationnelle contribuera énormément dans la lutte contre l’insécurité alimentaire. L’accès en mer est très limité à cause de la mer très agitée presque en permanence. Les passes en face des sites de débarquement sont parfois dangereuses dans la plupart du littoral. Ainsi, d’une part, l’effort de pêche est limité alors que les pêcheurs sont déjà peu nombreux, mais, d’autre part, il y a une régulation naturelle de la pression sur les ressources exploitées. Pour terminer, l’aménagement de la pêche dans son ensemble, c’est-à-dire le développement des activités halieutiques, est une des meilleures adaptations pour l’amélioration du niveau de vie de la population, notamment pour l’extrême Sud de Madagascar. En plus, soulignons que la pêche a été considérée comme étant la principale filière porteuse pour l’Androy (PRDR, 2006). Cependant, l’alphabétisation des communautés de pêcheurs, ainsi que la mise en place des infrastructures scolaires, s’avère très primordiale. Enfin, les variabilités climatiques dans le sud sont en rapport avec le phénomène d’El Niño, vu que ce dernier a une corrélation négative avec la sécheresse (Raholijao, 2009). CepenÍNDICE 227 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy dant, l’on a également observé des périodes d’occurrence d’El Niño sans provoquant de sécheresse dans le sud de Madagascar. Cette situation nous incite à prendre en compte et à étudier le lien entre cette dernière et les deux autres phénomènes océanographiques qui sont observés dans le sud, en l’occurrence, l’IOD et l’upwelling du sud de Madagascar. Des outils de prévision de la météo sont nécessaires. Références bibliographiques ARIVELO, A. T. 2009. Malagasy climate variability, characteristics, modes, mechanisms, modelling, teleconnection and prediction. A Thesis submitted at the School of Graduate Studies of Addis Ababa University, ETHIOPIA, in partial fulfillment of the requirements for the degree of PhD in Physics. 153p +Annexes. BATTISTINI, R. 1964. L’extrême Sud de Madagascar, étude géomorphologique. In le Relief de l’intérieur (Tome I). Etudes malgaches, département de Géographie – Université de Madagascar. 22 – 31 p, 50 – 51 p. BEMIASA, J. 2009. Dynamique des pêcheries traditionnelles d’anchois, de calmars et de poulpes du Sud-ouest de Madagascar : utilisation des outils océanographiques pour la gestion des ressources. Thèse de Doctorat. Institut Halieutique et des Sciences Marines – Université de Toliara. 100-184 p. ÍNDICE 228 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar BERTHOIS, L., BATTISTINI, R. et CROSNIER, A. 1964. Recherches sur le relief et la sédimentologie du plateau continental de l’extrême Sud de Madagascar. 41p. CINNER, J.E., 2008. Le rôle des tabous dans la conservation des ressources côtières à Madagascar. Ressources marines et traditions – Bulletin d’information n°22. 15 – 24p. DECARY, R. 1930 : L’ANDROY – Extrême Sud de Madagascar. Essai de Monographie Régionale I. Histoire – Civilisation – Colonisation. Ed. Géographiques, Maritimes et Coloniales – Paris. DECARY, R. 1933 : L’ANDROY – Extrême Sud de Madagascar. Essai de Monographie Régionale II. Histoire – Civilisation – Colonisation. Ed. Géographiques, Maritimes et Coloniales – Paris. 284p. DEFOORT, E., L’Androy. Essai de monographie (avril 1911 – juillet 1912), Imprimerie officielle, Antananarivo : s.éd, 1913. DEMORAES, F. 1999. Etudes des conséquences immédiates à terme des phénomènes associés à un événement El Niño ; Intérêt d’une approche géographique. Faisabilité et perspectives de la recherche en Equateur (1982-98). Mémoire de DEA Interface Nature / Sociétés – Université de Savoie. 77p. DONCQUES, G. (1975). Contribution geographique à l’etude du climat de Madagascar. Nouvelle Imprimerie des Arts Graphiques. HEURTEBIZE, G. & VERIN, P. 1974. « Premières découvertes sur l’ancienne culture de l’intérieur de l’Androy (Madagascar) : Archéo- ÍNDICE 229 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy logie de la vallée de Lambonaty sur la haute Manambovo », Journal de la Société des Africanistes, n°64. pp. 113-121. HEURTEBIZE, G.1986. Travaux et documents. Quelques aspects de la vie dans l’Androy, n°24, Antananarivo : Musée d’Art et d’Archéologie. KRAKSTAD, J.O., Mehl, S., Roman, R.E., Escobar-Porras, J., Stapley, J., Flynn, B., Olsen, M. & Beck, I.M. 2008. East Madagascar Current Ecosystem Survey, 23 august – 01 october 2008. Cruise reports, ‘Dr. Fridtjof Nansen’. NORAD/FAO Project GCP/INT/730/ NOR. LEBIGRE, J.M. et REAUD-THOMAS, G. 1995. Androka (Extrême Sud de Madagascar), cartes d’évolution des milieux. Collection « Iles et Archipels » n°30. DYMSET, Université de la Nouvelle-Calédonie et Université de Toliara, IH.SM. 69p + Annexes. LÖVEI, G. L. 2013. Modern examples of extinctions. Encyclopedia of Biodiversity, Volume 5: 365p. MAHATANTE, T.P. 2008. Activités et propositions d’aménagement de la pêche traditionnelle dans le village d’Ankilibe – Sud-ouest de Madagascar. Mémoire de fin d’études pour l’obtention de diplôme de Maîtrise en Sciences et Techniques de la Mer et du Littoral. Institut Halieutique et des Sciences Marines de l’Université de Toliara – Madagascar. 60p. MAHATANTE, T.P. 2010. Identification des influences des facteurs environnementaux sur la population de la Réserve de Biosphère de Mananara Nord en vue d’une étude d’impacts du Changement Cli- ÍNDICE 230 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar matique : propositions d’adaptation. Mémoire de fin d’études pour l’obtention de Diplôme d’Etudes Approfondies. Institut Halieutique et des Sciences Marines de l’Université de Toliara – Madagascar. 70p + annexes. MARA, E.R. 1990. Bioécologie et dynamique des populations de langoustes palinuridea australes malgaches. Thèse de Doctorat de 3è cycle. Etablissement d’Enseignement Supérieur des Sciences de l’Université de Toliara – Océanographie biologie halieutique. Partie I. 1 – 30p. MCCLANAHAN, T. R., J. E. Cinner, C. Abunge, A. Rabearisoa, P. Mahatante, F. Ramahatratra, and N. Andrianarivelo. 2014. Perceived benefits of fisherFisheries management restrictions in Madagascar. Ecology and Society 19(1): 5. http://dx.doi.org/10.5751/ ES-06080-190105. MCCLANAHAN, T.R., CINNER, J.E., MAINA, J., GRAHAM, N.A.J., DAW, T.M., STEAM, T.M., WAMUKOTA, A, BROWN, K., ATEWEBERHAN, M., VENUS, V. et POLUNIN, N.V.C. 2009. Conservation action in a climate change. WCS, Marine Programs, New York – USA. 53 – 59p. MORLAT, L. 2009. La gestion des impluviums en Androy (Madagascar) – Un levier pour le changement social. Etude et travaux en ligne N°24. Editions du Gret. 95p. PANA, 2006 – Plan d’Action National d’Adaptation aux changements climatiques à Madagascar: Direction générale de l’Environnement – Ministère de l’Environnement, des Eaux et Forêts. 64p. ÍNDICE 231 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy PAVIN de Lafrage Magali, 1997, Etude socio-économique des ressources de production des ruminants dans l’Androy : zébus, chèvres, moutons. Etablissement National d’Enseignement Supérieur Agronomique de Dijon (Vétérinaires sans Frontières) PEARSON, M.P., Godden, K., Ramilisonina, Retsihisatse, Schwenninger, J., Smith, H. 1996. The early Antandroy Kingdom: Excavations and Survey in Androy 1995. Nyame Akuma. N⁰ 45: pp.60 – 64. PRDR ou programme régional de développement rural. 2006. Outils de décision pour le programme de développement rural de la région Androy. PRD ou Plan Régional de Développement de la Région Androy – Province autonome de Toliara. 2005. Outils de décision pour le développement durable de la région Androy. 107p + annexes. RAHOLIJAO, N. 2009. La sécheresse et le changement climatique à Madagascar. Atelier sur la lutte contre la dégradation des terres : valorisation des acquis et perspectives. Direction Générale de la Météorologie. 36p. RAJAONARISON, V.T. 2015. Utilisation de l’eau dans le pays Ntandroy : cas de la Commune rurale d’Ambovombe Androy. Mémoire de maîtrise en géographie de la Faculté des Sciences et des Lettres de l’Université de Toliara. 102p. RAMAHATRATRA, F. 2014. Etude de la capacité de résilience du grand récif de Toliara et de sa gestion durable (facteurs poissons herbivores). Thèse de Doctorat de 3è cycle. Institut Halieutique et des Sciences Marines de l’Université de Toliara. 126p + annexes. ÍNDICE 232 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar RANDRIAMANANTSARA, 2010. Stratégie de survie de la population des bas Manambovo confrontée aux conditions naturelles ingrates. Mémoire de maîtrise – Département de Géographie de l’Université de Toliara. 112p. RAZANANDRAINY Fabrice Berthin, 2010, Problèmes et perspectives d’avenir de l’élevage à Ambovombe- Androy. Université de Toliara. Projet de Thèse. 83p. RAZANOELISOA, J. 2008. Aménagement et Gestion Intégrées des Ressources Biologiques. Application à la Région d’Anakao (SudOuest de Madagascar). Thèse de Doctorat en Halieutique. Spécialité : Gestion des Ressources. IH.SM. 180 p. REJELA, M.N., 1993. La pêche traditionnelle Vezo, Sud-ouest de Madagascar. Un système d’exploitation dépassé ? Thèse de Doctorat. Université de Bordeaux 3. 384p. RIDDERINKHOF, W., LE BARS, D., VON DER HEYDT, A. S. and DE RUIJTER, W. P. M. 2013. Dipoles of the South East Madagascar Current. Geophysical research letters, vol. 40, 558–562. TIANARISOA, T. 2010. L’expédition sur la faune et la flore marines dans le « grand Sud » malgache. Compte rendu de l’Expédition Atimo vata’e. MNHN – IH.SM – WCS. 31 p. TOVONDRAFALE, T. 2015. The elephant bird (Aepyornithidae): palaeoecological implications in southern Madagascar and extinction causes. Thèse de doctorat de troisième cycle. Formation doctorale Sciences de la terre, Faculté des Sciences – Université de Toliara. 86 – 125p. ÍNDICE 233 Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa & Mara Edouard Remanevy VOLDSUND, A. «The dynamics of the east Madagascar current system and its influence on the biological production associated to the shelf – an observational study». Master’s thesis in physical oceanography. University of Bergen, 2011. 95p. Notas 1. Territoire bien délimité et caractérisé par un climat aride et semi-aride dans l’extrême sud de Madagascar 2. Tiomena (littéralement: vent rouge) est le nom que les communautés ont attribué au vent à cause de la couleur de la poussière qu’il soulève. Il peut être appelé « tiopoty » (littéralement: vent blanc) dans d’autres endroits où la poussière est incolore. 3. Une remontée d’eaux profondes 4. Le nombre de pêcheurs sont souvent exagérés par les Chefs Fokontany car ces derniers espèrent toujours recevoir des dons après l’enquête – une des conséquences des interventions des projets humanitaires. 5. Ce sont les villages d’agro-pêcheurs où le nombre d’embarcations utilisées dépasse les 30 pirogues. 6. Asara : novembre – avril (période de pluie et chaude), Asotry : mai – juillet (période fraîche et souvent venteuse), Faosa : août – octobre (période chaude, sèche et venteuse) ÍNDICE 234 Ressources halieutiques potentielles et propositions d’adaptation aux variabilités climatiques dans l’extrême Sud de Madagascar 7. Quand la longueur d’une pirogue Vezo dépasse les 8 m, on l’appelle « Voringeze » - une dénomination qui la différencie des autres à cause de sa taille 8. Par définition, un récif est tout obstacle en mer. Le nôtre est constitué de grès marin et frange la côte sud. 9. Ressource déjà surpêchée dans la partie sud de Madagascar, notamment dans les trois sites de débarquement choisis. 10. Bien que la pêche ne soit pas mentionnée dans PANA comme étant l’un des secteurs à risque vis-à-vis du changement climatique, elle l’est car cette activité est dictée par le climat. ÍNDICE 235 DOI: 10.14198/MDTRRA2015.ESP.10 International Master programme on Sustainable Fisheries Management Bernardo Basurco1, Ramón Franquesa2 & José L. Sánchez Lizaso3, 4 Mediterranean Agronomic Institute of Zaragoza, CIHEAM University of Barcelona 3 University of Alicante 4 Corresponding author: [email protected] 1 2 Abstract This article presents a review of the international master programme organized by the University of Alicante (UA), the Spanish Ministry of Agriculture, Food and Environment (MAGRAMA), through the General Secretariat of Fisheries (SGP), and the International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), through the Mediterranean Agronomic Institute of Zaragoza (IAMZ). The Master was initially developed in cooperation with the University of Barcelona in ÍNDICE 236 International Master programme on Sustainable Fisheries Management the period 2004-2009, and has counted on the collaboration of the Department of Fisheries and Aquaculture of the Food and Agriculture Organization of the United Nations (FAO) since the beginning. Given the international scope of the marine environment, the need arises to establish a common method and language to be used between experts of different countries sharing fisheries. To train specialists that can facilitate cooperative measures to benefit all stakeholders is undoubtedly the great challenge, which this Master in Sustainable Fisheries Management (formerly Fisheries Economics and Management) has been addressing since 2004. In this article we describe the main topics that have been addressed, providing a short review of the training activities implemented and their impact. Keywords: Training, Fisheries, Management, Master programme Résumé Cet article présente une revue du programme de master international organisé par l’Université d’Alicante (UA), le Ministère Espagnol de l’Agriculture, de l’Alimentation et de l’Environnement (MAGRAMA), à travers le Secrétariat Général des Pêches (SGP), et le Centre International de Hautes Études ÍNDICE 237 Bernardo Basurco, Ramón Franquesa & José L. Sánchez Lizaso Agronomiques Méditerranéennes (CIHEAM), à travers l’Institut Agronomique Méditerranéen de Saragosse (IAMZ). Le Master a été initialement développé en coopération avec l’Université de Barcelone, dans la période 2004-2009, et a bénéficié de la collaboration du Département des Pêches et de l’Aquaculture de l’Organisation des Nations Unies pour l’Alimentation et l’Agriculture (FAO) depuis le début. Compte tenu de la portée internationale de l’environnement marin, le besoin d’établir une méthode et un langage communs pour être utilisés entre les experts des différents pays partageant la pêche s’avère nécessaire. La formation de spécialistes pouvant faciliter les mesures coopératives au profit de toutes les parties concernées est sans aucun doute le grand défi que le Master en Gestion Durable des Pêches (auparavant intitulé Économie et Gestion des Pêches) veut relever depuis 2004. Dans cet article, nous décrivons les principaux thèmes qui ont été abordés, en fournissant une brève description des activités de formation mises en œuvre et de leur influence. ÍNDICE 238 International Master programme on Sustainable Fisheries Management Introduction F ishery resources are an excellent source of food as well as a driver of job creation in the coastal areas. According to the FAO, supply of fish for food from both capture fisheries (marine and inland) and aquaculture currently provides more than 15% of the total supply of animal protein. Furthermore, international trade of seafood products has once again reached a maximum level, with an annual growth rate of 5% in the past decade. These statistics meanwhile, serve to highlight concern for the rise in fishing pressure that leads to the increasing number of overexploited and depleted stocks as well as recovering fishery resources (Hutchings, 2000; Jackson et al. 2001; Pauly et al. 2002) Great changes have been taking place in the fishing sector in recent times, including: (i) growing demand and high fish prices that are stimulating the increase in fishing effort; (ii) global technological advances that are affecting the structure of the fleets and their fishing capacity; (iii) protection of the environment, which, as in other sectors, has become a priority; and (iv) growing importance of the international scope of fisheries. The exploitation and management of fisheries has been in the hands of the fishing communities, supervised by the national administrations, until very recent times. But today, a new type ÍNDICE 239 Bernardo Basurco, Ramón Franquesa & José L. Sánchez Lizaso of management is necessary, flexible enough to respond to the evolution of the fishery resources, and to ensure stable and sustainable long-term exploitation. Therefore, the administration and the fishing sector must be capable of interpreting the reality of a situation, its probable evolution, and the repercussions that the implementation (or otherwise) of given measures will have in the medium term, in the biological, social and economic frameworks. In order to obtain and interpret management-supporting data, experts that have a multidisciplinary background are needed, covering diverse perspectives such as biology, economics, sociology or law, allowing them to valuate and assess fishery resources and to propose management measures through different techniques, such as mathematical simulations, statistics, surveys, assessments or negotiation. Therefore, it is of maximum interest to train these experts so they may advise stakeholders in the diverse world of fisheries: different administrations (local, regional or state), fishermen (artisanal or semi-industrial), social groups (shipowners, trade unions, consumers, processors, fish farmers, etc.). Furthermore, given the international scope of the marine environment, the need arises to establish a common method and language to be used between experts of the different coun- ÍNDICE 240 International Master programme on Sustainable Fisheries Management tries sharing fisheries. To train specialists, that can, from their respective countries, contribute to facilitating the search for cooperative measures that may benefit all stakeholders, is, undoubtedly, the great challenge for the future. The International Centre for Advanced Mediterranean Agronomic Studies is an intergovernmental organization created in 1962 under the auspices of the Council of Europe and the OECD. Its mission is to develop cooperation between Mediterranean countries through postgraduate training and promotion of cooperative research in the field of agriculture and natural resources. The Centre has 4 Mediterranean Agronomic Institutes situated in Bari (Italy), Chania (Greece), Montpellier (France) and Zaragoza (Spain). One of the five functional areas of Zaragona MAI is fisheries and aquaculture. A large part of the activities are carried out in collaboration with numerous national and international institutions of the Mediterranean region. They take place both at the IAMZ and in other centres of Mediterranean countries. Of the numerous collaborations, those established with following institutions are noteworthy for their continuity and intensity: the European Commission (EC), the Food and Agriculture Organization of the United Nations (FAO), the International Center for Agricultural Research ÍNDICE 241 Bernardo Basurco, Ramón Franquesa & José L. Sánchez Lizaso in the Dry Areas (ICARDA) and the European Association for Animal Production (EAAP). Programme of the Master in Sustainable Fisheries Management CIHEAM Master programmes have a duration of two academic years (120 ECTS), aimed at young graduates and professionals who wish to specialize and update their knowledge. The Masters are structured in two parts. The first part (60 ECTS) consists of lectures, practical work, individual and group work and technical visits. In the second part (60 ECTS), individual work is carried out as an initiation to research or to professional activity for 10 months on a given topic within the speciality. The objective of the Master in Sustainable Fisheries Management is to provide high level specialization in issues related to the economics and management of the fishing activity through an analysis of the fishing system, exploitation mechanisms, marketing and management, with special emphasis on the perspective of stock assessment and on the economic interpretation of fishing issues in the Mediterranean, an area which, due to its diversity of species and fleets and fragmented vessel ownership, requires management based on control ÍNDICE 242 International Master programme on Sustainable Fisheries Management of the fishing effort. It offers a multi-disciplinary vision of sustainable fisheries management from the perspective of different sciences such as biology, economics, law and sociology. The Master is at the present jointly organized by the University of Alicante (UA), the Spanish Ministry of Agriculture, Food and Environment (MAGRAMA), through the General Secretariat of Fisheries (SGP) and the CIHEAM through the Mediterranean Agronomic Institute of Zaragoza. It is highlighted that the Master was initially co-organized with the University of Barcelona and also counted on the collaboration with the former FAO Project CopMed II. Since 2004, when the programme started, six editions have been organized, with an average of 17 participants per edition; that is a total of 102 participants from 24 countries. Table 1 indicates the distribution of participants. It is worth to remark the very high international component of the master, with more than 60 % of students from abroad. The Master enables participants to: –– Make an analysis of the fishing system, exploitation mechanisms, marketing, evaluation and management, with special emphasis on the economic perspective and interpretation of fishing issues in the Mediterranean, an area which, ÍNDICE 243 Bernardo Basurco, Ramón Franquesa & José L. Sánchez Lizaso due to its diversity of species and fleets and fragmented vessel ownership, requires management based on control of the fishing effort –– Have a multi-disciplinary vision of fisheries management from the perspective of different sciences, such as biology, economics, law and sociology –– Acquire experience in the use of new techniques and methods for the development of a more efficient fisheries management, adapted to the conditioning social and environmental factors –– Be initiated into research, making a critical application of the knowledge, skills and competence acquired in the treatment of real problems related with the economics and management of fishing activity –– Exchange experiences and points of view, enhanced through a programme developed in a highly international and interprofessional context. The programme of the first part of the Master includes the following aspects: ÍNDICE 244 International Master programme on Sustainable Fisheries Management • Introduction to the marine ecosystem, fishery resources and aquaculture (6 ECTS) Structure and characteristics of marine ecosystems; Fisheries ecology and biodiversity; Fishery resources (typology and distribution of fishery resources; fishing exploitation and the ecosystem approach); Introduction to aquaculture (the aquaculture enterprise: production and management systems; aquaculture and coastal zone management); Practical work and case studies • Statistical analysis and database use (5 ECTS) Statistical analysis in fisheries research (statistical concepts and tools; theory and practice of sampling); Uses of databases in fisheries (statistical data and information management; application of Geographical Information Systems (GIS) to fisheries; statistical services of FAO and other institutions); Practical work: statistical analysis, use of databases and design of fisheries statistical systems • Dynamics of exploited fish populations (5 ECTS) Theoretical concepts; Recruitment, growth and mortality; Selectivity; Biological functions for parameter estimation; Catches and fishing effort; Standardization of fishing effort; ÍNDICE 245 Bernardo Basurco, Ramón Franquesa & José L. Sánchez Lizaso Catchability, vulnerability and accessibility; Data sources for population dynamics; Practical work: estimation of biological parameters • Theory and models for stock assessment (6 ECTS) Analytical models; Virtual Population Analysis and yield-perrecruit models; Global models; Fisheries survey: swept area and acoustic prospections; Difficulties in fisheries modelling: the problem of interactions between fleets and multiple species; An ecological model: Ecopath (Ecological Pathways Model); Obtaining data and parameters: market sampling, VIT, etc.; Results and conclusions; Models as management tools; Practical work: modelling exercises (VIT and Ecopath) • Basic economics and production factors in fisheries (4 ECTS) Basic economics; Fisheries business activity. The fishing vessel and fishing technology (typology, records and control parameters; jobs and training requirements; fishing techniques and gears; technological change and quantitative change); Practical work: economic projections and business management strategies ÍNDICE 246 International Master programme on Sustainable Fisheries Management • Fish trade and processing (4 ECTS) The fish trade worldwide; World trade institutions; Fish trade and marketing; The fishery production environment (fish processing; recreational activities; the economic context of fishing); Practical work: estimation of input-output tables in capture fisheries • Theory and application of bioeconomic models and economic and social indicators (6 ECTS) Static and dynamic bioeconomic models. Typology; Estimation of effort and of economic parameters. Definition of control parameters; Mecon, a simple simulation model; Mefisto/ BEMMFISH, a complex model adapted to the Mediterranean; Application of bioeconomic models; The role of indicators and typology; Use of indicators in management; Practical work: modelling exercises (BEMMFISH) and management proposals • Institutional framework: cooperation and research (4 ECTS) International cooperation (objectives and cooperation management; regional, national and private cooperation projects); Fisheries research (research policies and their application to ÍNDICE 247 Bernardo Basurco, Ramón Franquesa & José L. Sánchez Lizaso fisheries management; research institutions and programmes; research results and uses); The multidisciplinary approach, a Mediterranean application; Practical work: design of a fisheries research campaign • Maritime law and socio-cultural perspective (5 ECTS) Maritime and fisheries law (worldwide legal framework; evolution of international law; international agreements). The historical perspective of the fishing communities. The socio-cultural perspective; The socio-political perspective (associations and representatives in the fishing sector; participation in management); Practical work and case studies • Objectives and instruments for fishing policies (5 ECTS) The sustainable development of fisheries; Technical measures and regulation instruments; Fishing control; Marine protected areas of fisheries interest; Regional Fishery Organizations (RFOs); The Common Fisheries Policy (CFP) of the European Union; Practical work: analysis of regulation strategies ÍNDICE 248 International Master programme on Sustainable Fisheries Management • Applied fisheries policies (5 ECTS) Fisheries management in Spain; Fisheries management in Morocco; Management of employment and social services; Practical work: fishing policy planning project • Institutional visits (5 ECTS) Technical visits and seminars in government institutions, research centres, fishing organizations, processing industries and markets Lecturers in the first part of the Master More than 67 lecturers from, among others, the Universities of: Alicante, A Coruña, Barcelona, Ege (Turkey), Girona, Murcia, Politècnica de Catalunya, Politécnica de Valencia, Santiago de Compostela, Vigo; Research centres: CSIC, IEO, IFREMER-France, INRH-Morocco, IMARPE Peru; Public administrations in Spain: Centro Nacional de Formación Marítima de Bamio, DG Pesca y Alimentación Gobierno de Cantabria, Intecmar, ISM, SGP-MAGRAMA; International organizations: CIHEAM-IAMZ, FAO, GFCM, ICCAT, NAFO,; NGOs, firms and other private bodies: ANFACO, Fishermen’s guilds, Grupo Calvo, Mercasa, MSC, Oceana, Probitec, Simrad, WWF-MedPO. ÍNDICE 249 Bernardo Basurco, Ramón Franquesa & José L. Sánchez Lizaso Second part of the Master During the second part of the Master, participants prepare the Thesis required for being awarded the Master of Science Degree in a second academic year, upon submission of a work protocol presented under the supervision of the thesis tutor. The experimental work for the elaboration of the thesis will be carried out in the organizing institutions or in collaborating institutions, for a period of 10 months, under the direction of a tutor who should be a doctor of renowned experience. Results of the master programme indicates that more than 85 % of the student are working in subjects related with fisheries management at Ministries (33%), Universities and Research Institutions (42 %), NGOs (7%) or the private sector (7%). ÍNDICE 250 International Master programme on Sustainable Fisheries Management References HUTCHINGS, J.A. (2000) Collapse and recovery of marine fishes. Nature 406, 882-885 JACKSON, J.B.C., Michael X. KIRBY, Wolfgang H. BERGER, Karen A. BJORNDAL, Louis W. BOTSFORD, Bruce J. BOURQUE, Roger H. BRADBURY, Richard COOKE, Jon ERLANDSON, James A. ESTES, Terence P. HUGHES, Susan KIDWELL, Carina B. LANGE, Hunter S. LENIHAN, John M. PANDOLFI, Charles H. PETERSON, Robert S. STENECK, Mia J. TEGNER, Robert R. WARNER (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629-638 PAULY, D., Villy CHRISTENSEN, Sylvie GUÉNETTE, Tony J. PITCHER, U. Rashid SUMAILA, Carl J. WALTERS, R. WATSON, Dirk ZELLER (2002) Towards sustainability in world fisheries. Nature 418, 689-695. ÍNDICE 251 Bernardo Basurco, Ramón Franquesa & José L. Sánchez Lizaso Table 1: Distribution of participants per country Germany Algeria Argentina Brazil Colombia Ecuador Egypt The Savior Spain France Guinea Guinea-Bissau Italy Morocco Mauritania Mexico Mozambique Panama Peru Senegal Seychelles Tunisia Turkey Venezuela Total ÍNDICE 252 1 8 1 1 3 2 5 1 38 1 1 1 4 9 3 1 1 2 2 1 1 7 5 3 102