serie de estudios biológicos - ACP-EU Co

Transcripción

serie de estudios biológicos - ACP-EU Co
MEDITERRANEA
SERIE DE ESTUDIOS BIOLÓGICOS
2015 Época II Número especial
COMITÉ CIENTÍFICO:
G. U. CARAVELLO
S. G. CONARD
A. FARINA
A. FERCHICHI
A. A. RAMOS
1
st FISHERMAN
Con la colaboración de:
REGIONAL
CONFERENCE
Universitat d’Alacant
Universidad de Alicante
Invited talk by Daniel Pauly:
Official vs. reconstructed marine fisheries catches in the Western Indian
Im
- Early regist
- Registration
Revista electrónica anual
COMITÉ CIENTÍFICO:
S. G. CONARD. USDA Forest Service. Riverside. U.S.A.
A. FARINA. Lab. Ecologia del Paisaje. Museo Historia Natural. Aulla. Italia.
A. FERCHICHI. I.R.A. Medenine. Túnez.
G. U. CARAVELLO. Istituto di Igiene. Università di Padova. Italia.
A. A. RAMOS. Dep. CC. Del Mar y Biología Aplicada. U.A. España.
COMITÉ EDITORIAL:
V. Peiró, A. Pastor-López, E. Seva, Germán López Iborra, Frutos Marhuenda,
Alfonso A. Ramos Esplá y José Luis Sánchez Lizaso. U.A.
DIRECCIÓN:
Antonio Pastor. Instituto Interdisciplinar para el Estudio del Medio «Ramón Margalef»
(IMEM). Universidad de Alicante.
SECRETARÍA:
Victoriano Peiró ([email protected]).
Gestor Jefe: Gema Iglesias ([email protected]). IMEM. Universidad de Alicante.
EDITA:
Servicio de Publicaciones. Universidad de Alicante.
http://publicaciones.ua.es
CORRESPONDENCIA:
Instituto Interdisciplinar para el Estudio del Medio «Ramón Margalef» (IMEM)
Ap. 99 - 03080 Alicante. España.
Teléfono de Secretaría: +34965903400, ext. 1184
Fax: Rev. Mediterránea. IMEM. +34965909873
I.S.S.N.: 0210-5004
Depósito Legal: A-1059-1984
Maquetación:
Marten Kwinkelenberg
This publication has been produced with the assistance of the European Union. The contents of this
publication are the sole responsibility of the University of Alicante and can in no way be taken to reflect
the views of the European Union.
The Fisherman Project is financed by the ACP-EU Cooperation Programme in Higher Education
(EDULINK), a programme of the ACP Group of States, with the financial support of the European Union
www.fisherman-project.eu
[email protected]
Índice
Ester Boldrini, Teresa C. Borges, Eulalie Ranaivoson &
José L. Sánchez Lizaso
The FisherMan project: Capacity building for
sustainable Fisheries Management in the Southwest
Indian Ocean................................................................................5
Daniel Pauly
The fisheries in the South-Western Indian Ocean,
with emphasis on reconstructed catches...............................13
José L. Sánchez Lizaso
Closed areas for fisheries management:
How much is enough?..............................................................41
Riambatosoa Rakotondrazafy Andriamampandry
MIHARI: Networking coastal communities to manage
Madagascar’s small-scale fisheries sustainably.................... 53
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
Analysis of environmental parameters effects on the
spatial and temporal dynamics of tropical tuna in the
EEZ of Madagascar: coupling remote sensing and catch
data.............................................................................................69
Índice
Torleiv Bilstad, Bjørnung Jensen, Martin Toft &
Evgenia Protasova
Petroleum production in symbiosis with fisheries?
The norwegian experience.....................................................105
Teresa C. Borges, Patricia Calixto &
João Sendão
The common octopus fishery in South Portugal:
a new shelter-pot.....................................................................130
Rafik Nouaili, Carlos Montero-Castaño &
José Luis Sánchez-Lizaso
Environmental sustainability analysis of the clam
(Ruditapes decussatus, Linaeus 1758) fishery in
Zaboussa production area (southeastern Tunisia) using
the MSC fisheries standard....................................................155
Mahatante Tsimanaoraty Paubert, Fanazava Rijasoa &
Mara Edouard Remanevy
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême
Sud de Madagascar.................................................................183
Bernardo Basurco, Ramón Franquesa &
José L. Sánchez Lizaso
International Master programme on Sustainable
Fisheries Management............................................................236
DOI: 10.14198/MDTRRA2015.ESP.01
The FisherMan project: Capacity building
for sustainable Fisheries Management in the
Southwest Indian Ocean
Ester Boldrini1, Teresa C. Borges2,
Eulalie Ranaivoson3 & José L. Sánchez Lizaso1
University of Alicante, Spain, email: [email protected]
University of Algarve, Portugal
3
University of Toliara, Madagascar
1
2
Abstract
The FisherMan project Capacity building for sustainable Fisheries Management in the Southwest Indian Ocean (SWIO) is
co-financed by the European Commission through the ACP
Edulink programme. FisherMan aims at supporting higher education institutions in the SWIO region to create new study
programmes in sustainable fisheries management. This paper
presents an overview of the project activities and describes
ÍNDICE
5
Ester Boldrini, Teresa C. Borges, Eulalie Ranaivoson &
José L. Sánchez Lizaso
the 1st edition of the FisherMan Regional Conference celebrated during September 2015 in Madagascar whose main
aim was to bring together regional and international fisheries
experts, authorities, professionals, academics, policy makers
and other involved and interested in the Fishery sector, to exchange ideas and to promote an effective collaboration in the
South-Western Indian Ocean and increase fishery management education at higher education level.
Résumé
Le projet FisherMan - Renforcement des capacités pour la
gestion durable des pêcheries dans l’océan Indien du sudouest (SWIO) - est co-financé par la Commission Européenne
à travers le programme ACP Edulink. FisherMan vise à soutenir les institutions d’éducation supérieur de la région SWIO
dans la création de nouveaux programmes d’étude dans la
gestion durable de pêcheries. Ce papier présente une vue
d’ensemble des activités du projet et décrit la première édition de la Conférence Régionale FisherMan qui a eu lieu en
septembre 2015 au Madagascar avec comme but principal
de rassembler des experts régionaux et internationaux en
pêcheries, des autorités, professionnels, professeurs, chercheurs, décideurs politiques et autres impliqués et intéressés par le secteur de la pêche, pour échanger des idées et
ÍNDICE
6
The FisherMan project: Capacity building for sustainable
Fisheries Management in the Southwest Indian Ocean
promouvoir une collaboration efficace dans l’océan Indien su
sud-ouest et augmenter l’éducation en gestion de pêcheries
au niveau de l’éducation supérieur.
Introduction
C
urrent coastal and marine resources in South-Western Indian Ocean (SWIO) region are under increasing human and industrial pressure. The continued
decline of these resources is due to poorly coordinated and
unplanned resources exploitation. At the same time, the importance of marine fisheries to the national economies and
food security of Madagascar, Mozambique, Tanzania, Comoros Islands and Republic of Seychelles is increasing. Given
the present context, effective management of resources to
achieve ecological and economic sustainability is becoming
crucial and the challenge we are facing now consists in providing a cadre of well-trained and well-equipped practitioners
and professionals in sustainable fisheries management.
The project
Having in mind the above-mentioned context, the general
objective of the FISHERMAN project is to support the SWIO
region universities to prepare a new generation of skilled pro-
ÍNDICE
7
Ester Boldrini, Teresa C. Borges, Eulalie Ranaivoson &
José L. Sánchez Lizaso
fessionals for sustainable fisheries management in the region.
Five universities from five countries in the region are working
together on the project (Comoros, Madagascar, Mozambique,
Seychelles and Tanzania) with the support of two universities
from two European countries (Spain –project coordinator–
and Portugal).
The project addresses both institutional capacity building and
improvement of academic quality and relevance in the region,
leading to:
–– Enhanced contribution to national and regional policies on
cooperation in higher education on fisheries management
studies
–– Increased inter-institutional networking between higher education Institution of SWIO and EU, including institutions
offering teacher training, degrees and diplomas contributing to regional solutions to teacher shortages
–– Upgraded qualifications of academic staff of Higher Education Institution of SWIO
–– Improved institutional frameworks to pursue academic programmes and academic excellence in partner universities
–– Increased mobility of postgraduate students and teaching
staff through the provision of joint programmes
ÍNDICE
8
The FisherMan project: Capacity building for sustainable
Fisheries Management in the Southwest Indian Ocean
–– Graduates with the skills corresponding to those required
in the national and regional labour markets.
The FISHERMAN consortium is composed by 7 main institutions that are: University of Alicante, Spain (project coordinator); University of Algarve, Portugal; University of Seychelles,
Seychelles; University of Toliara, Madagascar; University of
Comoros, Comoros; University of Dar es Salaam, Tanzania
and University of Eduardo Mondlane, Mozambique. In addition with this, we count with the participation of two associate
partners: the Southwest Indian Ocean Fisheries Commission
and the Indian Ocean Tuna Commission.
Project objectives and expected results
The main objective of the FisherMan project is to support
SWIO region universities to prepare new generation of skilled
professionals for a sustainable fisheries management in the
region.
This will be achieved by means of developing and delivering
a study program (master or specialisation) with a regional dimension, aimed at building competences in sustainable fisheries management at SWIO region universities.
The main beneficiaries of the action will be teaching staff, researchers, students and administrators, all interested or inÍNDICE
9
Ester Boldrini, Teresa C. Borges, Eulalie Ranaivoson &
José L. Sánchez Lizaso
volved in the fisheries subject. They will benefit from specialized training sessions in fisheries and also other transversal
topics such as educational quality assurance.
Regional conference
In the framework of the FisherMan project, two Regional Conferences have been foreseen. The first one took place on the
10-11th September 2015 in the city of Mahajanga, Madagascar, with the theme Sustainable Fisheries in the South-Western Indian Ocean: the importance of the Education, Management and Governance.
With a format of two days composed by presentations, discussions and a final Round Table on the importance of integrating fisheries management in higher education, this conference brought together more than 100 regional and international Marine Resources professionals, fisheries and higher
education authorities, academics, policy makers, activists,
politicians and others involved and interested in the Fishery
sector in the region.
The main objectives of the Regional Conference were to
enhance the understanding of sustainable ocean resources
governance, its management and use in the region by critically assessing the agenda for reform; to discuss the pres-
ÍNDICE
10
The FisherMan project: Capacity building for sustainable
Fisheries Management in the Southwest Indian Ocean
ent situation in the Region about Fisheries Management and
Fisheries Education and to present the FisherMan project and
its developments.
The conference programme and summary of contributions
may be found at http://www.fisherman-project.eu/content/
conference-outputs
During the days of communication, discussion and exchange
of practices, the conference showed the importance of fisheries resources as a source of food and wealth in the SWIO
region. Management experiences that ensure the sustainable exploitation of these resources were presented, since, as
in the rest of the world, these resources are threatened by
overexploitation and use of destructive fishing gear both for
resources and habitats. Therefore, it is important to control
fishing effort, to eliminate destructive fishing techniques, to
advance in co-management, with the creation of marine protected areas. At the same time, this would ensure fairness in
the distribution of wealth generated.
For all this, building the capacities of multidisciplinary training
of technicians who can develop sustainable fisheries management is crucial. The universities in the region should have
a prominent role in the training of these professionals who will
join the government, NGOs or the private sector.
ÍNDICE
11
Ester Boldrini, Teresa C. Borges, Eulalie Ranaivoson &
José L. Sánchez Lizaso
In this special number of the Mediterranea Journal an extended version of some selected papers presented to the conference is included.
Acknowledgements
FISHERMAN is a project within the EDULINK Programme:
ACP-EU Higher Education Cooperation funded by the European Union and implemented by the ACP Secretariat.
Special thanks to the Institut Halieutique et des Sciences Marines of the University of Toliara, to the Ministre de l’Enseignement Supérieur et de la Recherche Scientifique and to the
Ministre des Ressources Halieutiques et de la Pêche for their
support to the 1st FISHERMAN Conference.
ÍNDICE
12
DOI: 10.14198/MDTRRA2015.ESP.02
The fisheries in the South-Western Indian
Ocean, with emphasis on reconstructed catches
Daniel Pauly
Sea Around Us, University of British Columbia, Vancouver, Canada
Email: [email protected]
Abstract
Following a brief description of the evolution of marine fisheries
since the Second World War, the major trends in the domestic
and foreign fisheries in the Exclusive Economic Zones (EEZs)
of the Comoros, Madagascar, Mozambique, the Seychelles
and Tanzania are reviewed, with emphasis on the actual (‘reconstructed’) catches (as opposed to officially reported catches) of the domestic fisheries for the 61 year period from 1950
to 2010. The discrepancies between these two catch types
have policy implication which leads to a discussion of what
the governance of these fisheries should emphasize, besides
ÍNDICE
13
Daniel Pauly
having to be ecosystem-based, and increasingly account for
demographic pressure and climate change. The resource
managers to be trained for facing these challenges will have
to have to be versatile, conservation-orientated, and adept at
making use of generic online resources that allow bypassing
time-consuming and costly local replications.
Résumé
Suite à une brève description de l’évolution de la pêche maritime depuis la Seconde Guerre mondiale, les principales tendances de la pêche intérieure et étrangère dans les zones
économiques exclusives (ZEE) des Comores, Madagascar,
le Mozambique, les Seychelles et la Tanzanie sont examinées, l’accent étant mis sur les captures (‘reconstruites’)
réelles (par rapport à les captures déclarées officiellement)
des pêches intérieures pour la période de 61 ans allant de
1950 à 2010. Ces divergences ont une implication politique
qui conduit à une discussion sur ce que la gouvernance de
ces pêcheries devrait souligner, en plus d’avoir à être fondée
sur les écosystèmes, et de plus en plus tenir compte de la
pression démographique et le changement climatique. Les
gestionnaires des ressources formés pour faire face à ces
défis devront être polyvalents, orientées vers la conservation
et doués pour utiliser des ressources en ligne génériques perÍNDICE
14
The fisheries in the South-Western Indian Ocean,
with emphasis on reconstructed catches
mettant de contourner les reproductions locales coûteuses en
temps et laborieuses.
Introduction
T
he period following the Second World War saw a massive increase in fishing effort, particularly in the 1960s.
However, crashes due to this overfishing began to be
reflected in global catch trends in the 1970s, and intensified
in the 1980s and 1990s. In response, the industrialized countries of the Northern Hemisphere (where overfishing-induced
catch declines appeared first) moved their effort offshore
(Kleisner et al. 2014), toward deeper waters (Morato et al.
2006), and toward the south, i.e., to the coasts off developing
countries, and beyond into the southern hemisphere, all the
way to Antarctica (Swartz et al. 2010a). Now, in the second
decade of the 21st century, the global expansion of fisheries
is completed, and the real global catch, which is much higher
than officially reported, peaked in the mid 1990s and is now
rapidly declining (see www.seaaroundus.org). In parallel,
the collateral damage to marine ecosystems and biodiversity
continues to increase. Several factors act to prevent the public in developed countries from realizing the depth of the crisis
fisheries are in, notably the increased imports by developed
countries, of seafood from developing countries (Swartz et al.
ÍNDICE
15
Daniel Pauly
Figure 1. Map of the Southwestern Indian Ocean, emphasizing
the Exclusive Economic Zones of the Comoros, Madagascar,
Mozambique, the Seychelles and Tanzania.
ÍNDICE
16
The fisheries in the South-Western Indian Ocean,
with emphasis on reconstructed catches
2010b). Also, the misleading perception that aquaculture can
substitute for declining catches is widespread. In some countries, notably the US, stocks are being rebuild, but elsewhere,
the failure to respond creatively to these clear trends bodes
ill for the next decades. Indeed, the projected effects of global warming (productivity declines in the tropics, widespread
disruptions at high latitudes; Cheung et al. 2010), which have
already began to be felt in the last decades (Cheung et al
2013), will strongly impact fisheries and global seafood supply.
The area of the South-Western Indian Ocean covered by
the FisherMan Project (http://www.fisherman-project.eu/)
covers the Exclusive Economic Zones (EEZs) of the Comoros, Madagascar, Mozambique, the Seychelles and Tanzania
(Figure 1). In the following, a brief account of major domestic
and foreign marine fisheries from 1950 to 2010 is given for
each of these countries, capped by a general discussion of
the governance of these fisheries, and of the research that is
required for their management, along with some thought on
the university education required by fisheries managers and
similar personnel in the region.
ÍNDICE
17
Daniel Pauly
Material and Methods
The fisheries catch reconstructions whose results are presented below were based on the ideas (in Pauly 1998) that (i)
there is no fishery with ‘no data’, because fisheries, as social
activities, throw a ‘shadow’ unto other sectors of the economy
in which they are embedded, and (ii) it is always worse to put
a value of ‘zero’ (or ‘no data’, which will be translated into a
zero) for the catch of a poorly documented fishery than to estimate its catch, even roughly, because subsequent users of
one’s statistics will interpret the zeroes as ‘no catches’, rather
than ‘catches unknown’. This was operationalized by Zeller et
al. (2007) as a six-step approach, as follows:
1.Identification, sourcing and comparison of baseline catch
times series, i.e., a) FAO (or other international reporting
entities) reported landings data by FAO statistical areas,
taxon and year; and b) national data series by area, taxon
and year;
2.Identification of sectors (e.g. subsistence, recreational),
time periods, species, gears etc., not covered by (1), i.e.,
missing data components. This is conducted via extensive
literature searches and in collaboration with local experts;
ÍNDICE
18
The fisheries in the South-Western Indian Ocean,
with emphasis on reconstructed catches
3.Sourcing of available alternative information on missing
data identified in (2), via extensive searches of the literature (peer-reviewed and grey, both online and in hard
copies) and in consultations with local experts. Information
sources include social science studies (anthropology, economics, etc.), reports, data sets and expert knowledge;
4.Development of data ‘anchor points’ in time for each missing data item, and expansion of anchor point data to country-wide catch estimates;
5.Interpolation for time periods between data anchor points,
either linearly or assumption-based for commercial fisheries, and generally via per capita (or per fisher) catch rates
for non-commercial sectors; and
6.Estimation of total catch times series by combining the reported catches in (1) and the interpolated, country-wide expanded missing data series in (5).
There is obviously more to reconstruction than this (notably
for making uncertainties explicit, see, e.g., Zeller et al. 2014),
but this summary should suffice for the five country accounts
presented below. Le Manach and Pauly (2015) should be
consulted for reconstructions covering the entire western
Indian Ocean region, and Pauly and Zeller (2016; sea also
ÍNDICE
19
Daniel Pauly
www.seaaroundus.org) for reconstructions covering all the
EEZs of the world.
Results
Comoros (based on Doherty et al. 2015a)
The Union of the Comoros is an archipelago in the Western
Indian Ocean, composed of three main islands, which have
a combined land area of 1,670 km2 and an EEZ of 165,000
km2 (Figure 1). The domestic fisheries consist of a small-scale
boat fleet of pirogues and motor boats operated by men, and
shore-based fishing by women. Small-scale catches from
the artisanal and subsistence sectors compose the bulk of
the domestic in the Comoros’ EEZ (Figure 2A). Doherty et
al. (2015a), based on these and other reports, reconstructed
domestic catches of 1,200 t∙year-1 in the early 1950s, which
increased to 10,000 t by the mid-1980s, and around 18,500
t∙year-1 from 2005 to 2010. The rapid increase in later years
was due to the increasing number of motorized vessels, more
efficient gear, and the use of fish aggregating devices (FADs)
offshore. Overall, reconstructed catches are 1.4 times the
data reported by FAO for the Comoros; the discrepancy is
mainly due to an increase in catches since 1995, which is
not reflected in the FAO data. Figure 2B shows that while do-
ÍNDICE
20
The fisheries in the South-Western Indian Ocean,
with emphasis on reconstructed catches
mestic catches dominate the total removals, foreign fishing
by Spain, France and Japan also occurs. The reconstructed
catch consists primarily of skipjack tuna (Katsuwonus pelamis) and yellowfin (Thunnus albacares) offshore, and sardinellas (Sardinella spp.) and anchovies (Family Engraulidae)
closer inshore (Figure 2C).
Figure 2. Domestic and foreign catches taken in the EEZ of
Comoros. A) by sector; B): by fishing country (note that foreign
catches are very uncertain); C): by taxon.
ÍNDICE
21
Daniel Pauly
Madagascar (adapted from Le Manach et al. 2011, 2012)
Madagascar, which has a land area of 587,000 km2 and an
EEZ of 1.2 million km2 (Figure 1), is one of the world’s poorest developing countries, and its people depend heavily on
marine resources for their livelihood (Barnes-Mauthe et al.
2013). Exports of these resources and foreign fishing access
agreements are important economically. In recent years, concerns have been voiced amongst local fishers and industry
groups, yet knowledge of Malagasy fisheries remains poor
(Le Manach et al. 2012). Unfortunately, fisheries legislations,
management plans and foreign fishing access agreements
are often decided on based on very incomplete data (Le
Manach et al. 2012). As presented in Figure 3A, total catches allocated to Madagascar’s EEZ are dominated by the industrial sector, followed closely by the artisanal sector. The
catch reconstruction of all Malagasy fisheries sectors performed by Le Manach et al. (2011) suggests that domestic
catches increase from 15,000 t·year-1 in the early 1950s to
137,000 t·year-1 from 2000 to 2010. Overall, this was about
twice as high as officially reported, due in part to the subsistence sector, which is missing in the national statistics. A
large component of the allocated catches originate from domestic fisheries; however, varying catches by Spain, France
ÍNDICE
22
The fisheries in the South-Western Indian Ocean,
with emphasis on reconstructed catches
and Yemen, among others, have been documented (Figure
3B). This catch consists mainly of halfbeaks (Family Hemiramphidae), skipjack tuna (Katsuwonus pelamis), Indian white
prawn (Fenneropenaeus indicus) and grunts (Family Haemulidae; Figure 3C). Signs of stock decline have been observed,
suggesting that the current fishing pressure is excessive.
Figure 3. Domestic and foreign catches taken in the EEZ of
Madagascar. A) by sector; B): by fishing country (note that foreign
catches are very uncertain); C): by taxon.
ÍNDICE
23
Daniel Pauly
Mozambique (adapted from Jacquet at al. 2007, 2010)
Mozambique stretches along the coast of East Africa, between South Africa and Tanzania (Figure 1), has an EEZ of
571,000 km2 with a shelf of 85,300 km2, and is relatively rich
in marine resources (see contributions in Pauly 1992). However, Mozambique underreports its marine catches (Jacquet
et al. 2010). Small-scale fisheries, including subsistence fishing by women, account for most marine fisheries landings
within Mozambique’s EEZ (Figure 4A). Foreign fishing occurs, but is not prominent (Figure 4B). Doherty et al. (2015)
reconstructed catches (including discards) between 55,000
and 64,000 t·year-1 in the 1950s, and which peaked at over
200,000 t∙year1 in the mid-1980s, but were affected by the war
of independence from Portugal, followed by a long civil war.
By the late 2000s, catches were between 120,000-130,000
t∙year-1. Between 1950-2010, the fishing sector is estimated
to have caught 4.6 times the landings reported by FAO on
behalf of Mozambique. However, since 2003, annual catches
reported to FAO have increased due to substantial improvements in national data reporting systems, and the total reconstructed catches are only 1.6 times the statistics reported by
FAO. Figure 4C, based on Doherty et al. (2015), summarizes
the taxonomic composition of the catch, which includes her-
ÍNDICE
24
The fisheries in the South-Western Indian Ocean,
with emphasis on reconstructed catches
rings, shads and sardines (Family Clupeidae) and anchovies
(Engraulidae). Although globally Mozambique has a low (if increasing) per capita GDP, the country is demonstrating that
this should not be a reason for inaccurate fisheries statistics.
Hopefully, this example will be followed elsewhere.
Figure 4. Domestic and foreign catches taken in the EEZ of
Mozambique. A) by sector; B): by fishing country (note that foreign
catches are very uncertain); C): by taxon.
ÍNDICE
25
Daniel Pauly
Seychelles (adapted from Le Manach et al. 2015)
The Seychelles is an archipelago located north of Madagascar, composed of 115 islands; it has a land area of 459 km2
and an EEZ of 1.33 million km2 (Figure 1). With around 15%
of the available formal jobs, the fisheries sector is the main
pillar of the national economy, the second being tourism. The
domestic fisheries sector is small-scale, with a fleet of small
boats targeting demersal and small pelagics in and around
the coral reefs (SFA 2014). Since the early 1990s, though,
an expansion towards offshore waters has occurred, with a
fleet of longliners targeting primarily swordfish. Total domestic catches were estimated to have increased from 3,100 t∙year-1 in the 1950s to around 20,000 t∙year-1 in the 2000s (of
which around 5,000 t∙year-1 are artisanal, Le Manach et al.
2015), with reconstructed domestic catches being around 1.3
times the figures reported to FAO. Overall, catches within the
EEZ are dominated by industrial fleets (Figure 5A), mostly
foreign (Figure 5B). Due to the predominance of foreign industrial fleets, catches are dominated by large pelagics (Figure 5C). A large sector contributing to the national economy
is foreign owned: the large fleets of Spanish purse seiners
and Taiwanese and Japanese longliners are often Seychelles
flagged and operate throughout the western Indian Ocean. A
ÍNDICE
26
The fisheries in the South-Western Indian Ocean,
with emphasis on reconstructed catches
portion of their catch is landed in Victoria on Mahé (Figure 1),
the largest tuna hub in the Indian Ocean, and processed at
the national cannery.
Figure 5. Domestic and foreign catches taken in the EEZ of the
Seychelles. A) by sector B): by fishing country (note that foreign
catches are very uncertain); C): by taxon.
ÍNDICE
27
Daniel Pauly
Tanzania (adapted from Bultel et al. 2015; Doherty et al.
2015b and Jacquet et al. 2007, 2010)
Tanzania (Figure 1) has a shelf area of 19,000 km2 and an
EEZ of 241,000 km2. The Tanzanian coastline is coastline dotted by numerous islands (Figure 1), of which Pemba and Zanzibar form the ‘Zanzibar Region’, previously separate, now
joined with the mainland (‘Tanganyika’) into the United Republic of Tan-zan-ia. Until a few years ago, Zanzibar’s catches, although relatively large, were not included in landings
reported by FAO on behalf of Tanzania. Also, the mainland
catches were underestimated due to incomplete country-wide
expansion of locally sampled catch data. Thus, a reconstruction of Tanzania catches was undertaken (Jacquet and Zeller
2007; Jacquet et al. 2010; updated by Bultel et al. 2015) which
addressed these issues, and estimated domestic catches
of 18,000 t∙year-1 in the early 1950s and 110,000 t in 2010.
Small-scale fisheries, especially artisanal, dominate catches in this EEZ (Figure 6A), with little foreign fishing presently
documented (Figure 6B). This highlights the often neglected
role of artisanal and subsistence fisheries (see, e.g., Nakamura 2011), another reason why the reconstructed catches
are 1.8 times the FAO catches for Tanzania, even after Zanzibar is taken into account. These catches were dominated
ÍNDICE
28
The fisheries in the South-Western Indian Ocean,
with emphasis on reconstructed catches
by emperors (Family Lethrinidae), sardine (Sardinella spp.),
shark and rays, jacks (Carangidae), rabbitfishes (Siganidae)
and mackerels and tuna (Scombridae; Figure 6C). The number of taxa reported to FAO has increased in recent years,
thus decreasing the amount of miscellaneous ‘marine fishes
nei’, a positive development also noted in other countries of
the region.
Figure 6. Domestic and foreign catches taken in the EEZ of
Tanzania. A) by sector; B): by fishing country (note that foreign
catches are very uncertain); C): by taxon.
ÍNDICE
29
Daniel Pauly
Discussion
For the period from 1950 to 2010, the reconstructed domestic catches for the Comoros, Madagascar, Mozambique, the
Seychelles and Tanzania ranged from 1.3 (Seychelles) to 4.6
(Mozambique) times as much as the data reported by the
FAO on behalf of these countries, with a median value of 1.8
(Tanzania). These discrepancies, which fortunately exhibit a
declining trend, but which do not account for the catch of foreign fleets, are predominantly due to two sources of unreported catches:
i. The discards of industrial fisheries, mainly from bottom
trawling for penaeid shrimps;
ii. The widespread neglect of small-scale fisheries, here artisanal and subsistence fisheries.
Item (i) reflects a practice – the wholesale discarding of the
perfectly edible fish that is caught along with targeted shrimps
– that is wasteful and arguably immoral, and which ought to
be banned in the South-western Indian Ocean region, whose
countries – notably Madagascar – suffer from food insecurity.
Even the European Parliament has now passed legislation to
gradually ban discarding, following the example of Norway,
where discarding was phased out starting in the mid-1980s.
ÍNDICE
30
The fisheries in the South-Western Indian Ocean,
with emphasis on reconstructed catches
Item (ii) refers to a widespread phenomenon in developing
countries, i.e., for politicians and fisheries managers to focus
on industrial export fisheries – notably because they generate
foreign exchange (and also, it must be said) opportunities for
corruption – while paying scant attention, if any, to the artisanal and subsistence fisheries yielding the animal protein
that rural people eat, and thus contribute to their food security in a way that export-orientated industrial fisheries cannot
match (Pauly 2006).
The Sea Around Us has recently completed the first pass of
a global project devoted to help overcome this widespread
policy bias against small scale fisheries, notably by ensuring
that all national catch reconstruction, as here illustrated for five
countries, disaggregate catch estimates by sector, with the
catch of the small scale sectors (artisanal and subsistence,
and recreational where possible) explicitly identified (see Pauly and Zeller 2016, and www.searoundus.org). I also believe,
given that member countries of the Food and Agriculture Organization of the U.N. (FAO) must annually report their catch
to FAO, that they should be asked to supply catches separately for large scale (industrial) and small-scale fisheries (Pauly
and Charles 2015), as this would encourage the development
of catch data recording systems that are less biased against
small-scale fisheries. This would then serve as basis for a
ÍNDICE
31
Daniel Pauly
re-evaluation of the role of coastal small scale fisheries, which
ought to be encouraged and privileged, e.g., when they competes with industrial vessels operating inshore (Pauly 2006).
In contrast, the current emphasis of policy makers in the
Western Indian Ocean region is to encourage the growth of
offshore, export-orientated pelagic fisheries, i.e., to bank on
fisheries resources whose catches are currently declining under an excessive multinational fishing pressure (Figure 7).
Figure 7. Industrial landing of large pelagic fishes from the Indian
Ocean, 1950-2010, showing a) the total annual reported landings
by area; b) percentage landing by country; c) percentage landing
by gear; and d) percentage landing per species. (The grey color in
panels B, C and D refers to ‘Others’; source: Le Manach et al. 2014).
ÍNDICE
32
The fisheries in the South-Western Indian Ocean,
with emphasis on reconstructed catches
Finally, the FisherMan project has, as one of its task, the development of (Msc.-level) courses/curricula for future fisheries managers in the South-Western Indian Ocean.
During my nearly 40 year career in fisheries, as I taught fisheries science courses on five continents in four languages,
and supervised over 50 Master and PhD students from and
in a multitude of countries, I also noted that fisheries resources and marine biodiversity have declined across the board,
as have terrestrial resources and biodiversity. These declines
have sometimes been subtle (Pauly 1995) and often contested (see www.fishingdown.org), but they occurred nevertheless. From this, and from the global fisheries reconstruction
project that the Sea Around Us just concluded, I offer two recommendations regarding the training of fisheries managers:
My first recommendation is that a solid grounding in quantitative ecology and resource economics is needed for future
fisheries managers, not only to understand how to optimally
exploit marine resources, but to also understand the effects of
relentless human population (and demand) growth on natural
resources (see, e.g., Pauly 2006), combined with the effects
of global warming on marine resource populations (Cheung
et al. 2010, 2013). This requires that the cursus must focus
on resource conservation, i.e., how to prevent the wholesale
ÍNDICE
33
Daniel Pauly
liquidation of all natural resources in the next few decades,
especially in developing countries. This is a major issue for
the 21st Century, which is not going to be solved by ritual invocations of “sustainable development”, and the ill-founded
notion that aquaculture can replace fisheries.
My second recommendation is that new courses for developing-country setting ought to be increasingly structured around
the free, high quality resources that are available online, and
which can replace costly books and foreign experts, and
routine investigations. This ranges from Wikipedia, a unique
multilingual encyclopedia, to domain-specific tools such as
FishBase (www.fishbase.org), which can be not only used
to teach ichthyology (via an online manual already tested in
multiple course at several universities worldwide), but also
used for fish identification, to document fish biodiversity, and
to obtain estimates of parameters (growth, mortality, etc.) for
use in stock assessments (e.g., Martell and Froese 2013) or
ecosystem models (Christensen and Walters 2004). There is
simply no more time for duplicative parameter estimations,
especially when such estimations take the place of locally
adapting and running resource optimization models.
Indeed, I believe that the ability to access and use such online
resources will increasingly define good managers. However,
ÍNDICE
34
The fisheries in the South-Western Indian Ocean,
with emphasis on reconstructed catches
at the same time, we ought to abandon the notion that these
resources managers should be government agents. Thus, the
community of environmental non-government organizations
(e-NGOs) have become in both developed and developing
countries a major employer of fisheries, ecology and resources management graduates (especially at the Master level), a
trend that is likely to intensify in the future, and which neither
governments, not the private sector are likely to match. A cursus for the fisheries managers of the future will thus have to
consider the requirements of e-NGOs, which emphasize the
ability to communicate with laypeople, and to use scientific
and other knowledge to solve practical problems.
Acknowledgements
This is a contribution of the Sea Around Us, a research initiative based at the University of British Columbia in Vancouver,
Canada and funded by the Paul G. Allen Family Foundation.
I thank the organizers of the FishMan Project, particularly Dr.
Jose Luis Sanchez for the opportunity to give the keynote address and to participate in a panel discussion at the First FisherMan Regional Conference on “Sustainable Fisheries in the
South-Western Indian Ocean: the Importance of Education,
Management and Governance,” 10 & 11 September 2015, in
ÍNDICE
35
Daniel Pauly
Mahajanga, Madagascar, where the above material and ideas were original presented.
References
BARNES-MAUTHE M, OLESON KLL and ZAFINDRASILIVONONA
B (2013). The total economic value of small-scale fisheries with a
characterization of post-landing trends: An application in Madagascar with global relevance. Fisheries Research 147: 175-185.
BULTEL E, DOHERTY B, HERMAN A, LE MANACH F and ZELLER
D (2015). An Update of the Reconstructed Marine Fisheries Catches of Tanzania with Taxonomic Breakdown. pp. 151-161 In Le
Manach F and Pauly D (eds.), Fisheries catch reconstructions in
the Western Indian Ocean, 1950-2010. Fisheries Centre Research
Reports 23(2).
CHEUNG, W.W.L., R. WATSON and D. PAULY (2013). Signature of
ocean warming in global fisheries catch. Nature 497: 365-368.
CHEUNG, W.W.L., V.W.Y. LAM, J.L. SARMIENTO, K. KEARNEY,
R. WATSON, D. ZELLER and D. PAULY. (2010). Large-scale redistribution of maximum fisheries catch potential in the global ocean
under climate change. Global Change Biology 16: 24-35.
CHRISTENSEN V. and WALTERS C.J. (2004) Ecopath with Ecosim:
methods, capabilities and limitations. Ecological Modelling 172:
109-139.
ÍNDICE
36
The fisheries in the South-Western Indian Ocean,
with emphasis on reconstructed catches
DOHERTY B, HAUZER M and LE MANACH F (2015a) Reconstructing Catches for the Union of the Comoros: Uniting Historical Sources of Catch Data for Ngazidja, Ndzuwani and Mwali from 19502010. p. 1-11 In Le Manach F and Pauly D (eds.), Fisheries catch
reconstructions in the Western Indian Ocean, 1950-2010. Fisheries
Centre Research Reports 23(2).
DOHERTY B., MCBRIDE M.M., BRITO A.J., LE MANACH F., SOUSA L., CHAUCA I. and ZELLER D. (2015b). Marine Fisheries in
Mozambique: Catches Updated to 2010 and Taxonomic Disaggregation, p. 67-82 In Le Manach F and Pauly D (eds.), Fisheries catch
reconstructions in the Western Indian Ocean, 1950-2010. Fisheries
Centre Research Reports 23(2).
HAUZER M, DEARDEN P and MURRAY G (2013) The fisherwomen
of Ngazidja island, Comoros: Fisheries livelihoods, impacts, and
implications for management. Fisheries Research 140: 28-35.
JACQUET J, BULTEL E, DOHERTY B, HERMAN A, LE MANACH
F and ZELLER D (2016a) Tanzania. In Pauly D and Zeller D (eds.),
Global Atlas of Marine Fisheries: Ecosystem Impacts and Analysis.
Island Press, Washington, D.C.
JACQUET J, FOX H, MOTTA H, NGUSARU A and ZELLER D
(2010). Few data but many fish: marine small-scale fisheries catches for Mozambique and Tanzania. African Journal of Marine Science 32(2): 197-206.
JACQUET JL and ZELLER D (2007) Putting the ‘United’ in the United
Republic of Tanzania: reconstructing marine fisheries catches for
ÍNDICE
37
Daniel Pauly
Tanzania. pp. 49-60 In Zeller D and Pauly D (eds.), Reconstruction
of marine fisheries catches for key countries and regions (19502005). Fisheries Centre Research Reports 15(2).
KLEISNER, K., H. MANSOUR and D. PAULY. 2014. Region-based
MTI: resolving geographic expansion in the Marine Trophic Index.
Marine Ecology Progress Series, 512: 185-199.
LE MANACH F, ANDRIAMAHEFAZAFY M, HARPER S, HARRIS A,
HOSCH G, LANGE G-L, ZELLER D and SUMAILA UR (2012b)
Who gets what? Developing a more equitable framework for EU
fishing agreements. Marine Policy 38: 257-266.
LE MANACH F, BACH P, BOISTOL L, ROBINSON J and PAULY D
(2015) Artisanal fisheries in the world’s second largest tuna fishing
ground - Reconstruction of the Seychelles’ marine fisheries catch,
1950-2010, p. 99-109 In Le Manach F and Pauly D (eds.), Fisheries catch reconstructions in the Western Indian Ocean, 1950-2010.
Fisheries Centre Research Reports 23(2).
LE MANACH, F., A. CISNEROS-MONTEMAYOR, A. LINDOP, A.
PADILLA, L. SCHILLER, D. ZELLER and D. PAULY. (2014).
Global catches of large pelagic fishes, with emphasis on tuna in
the high seas p. 26-34 In: Pauly, D. and D. Zeller (eds.). So long,
and thanks for all the fish: the Sea Around Us, 1999-2014 – a fifteen-year retrospective. A Sea Around Us Report to the Pew Charitable Trusts, University of British Columbia, Vancouver.
ÍNDICE
38
The fisheries in the South-Western Indian Ocean,
with emphasis on reconstructed catches
LE MANACH F and PAULY D (Editors), 2015. Fisheries catch reconstructions in the Western Indian Ocean, 1950-2010. Fisheries
Centre Research Reports 23(2), 161 p.
LE MANACH F, GOUGH C, HARRIS A, HUMBER F, HARPER S
and ZELLER D (2012) Unreported fishing, hungry people and political turmoil: The recipe for a food security crisis in Madagascar?
Marine Policy 36: 218-225.
LE MANACH F, GOUGH C, HUMBER F, HARPER S and ZELLER
D (2011) Reconstruction of total marine fisheries catches for Madagascar (1950-2008). pp. 21-37 In Harper S and Zeller D (eds.),
Fisheries catch reconstructions: Islands, Part II. Fisheries Centre
Research Reports 19(4).
MARTELL, S. and R. FROESE. (2013). A simple method for estimating MSY from catch and resilience. Fish and Fisheries 14(4): 504514.
MORATO, T., R. WATSON, T.J. PITCHER and D. PAULY. 2006.
Fishing down the deep. Fish and Fisheries 7(1): 24-34.
NAKAMURA R (2011) Multi-ethnic-coexistence in Kilva Island, Tanzania. Shima - The International Journal of Research into Island
Cultures 5(1): 44-68.
PAULY, D. (Editor) (1992) Population dynamics of exploited fishes and crustaceans in Mozambique: contributions from a course
on the “Use of Computers for Fisheries Research”, 23 February
- 15 March 1988, Maputo, Mozambique. Revista de Investigação
Pesqueira 21, 135 p.
ÍNDICE
39
Daniel Pauly
PAULY, D. (1998). Rationale for reconstructing catch time series. EC
Fisheries Cooperation Bulletin 11, 4-10.
PAULY, D. (1995). Anecdotes and the shifting baseline syndrome of
fisheries. Trends in Ecology and Evolution 10(10): 430.
PAULY, D. (2006). Major trends in small-scale marine fisheries, with
emphasis on developing countries, and some implications for the
social sciences. Maritime Studies (MAST) 4(2): 7-22.
PAULY, D. and A. CHARLES. (2015). Counting on Small-Scale Fisheries. Letter to Science. 347: 242-243.
PAULY, D. & ZELLER, D. (2016). Catch reconstructions reveal that
global marine fisheries catches are higher than reported and declining. Nat. Commun. 7:10244. doi: 10.1038/ncomms10244
SFA (2014) Annual report 2012. Seychelles Fishing Authority (SFA)
Victoria (Seychelles). xiii + 75 p.
SWARTZ, W., E. SALA, R. WATSON and D. PAULY. (2010a). The
spatial expansion and ecological footprint of fisheries (1950 to present). PLoS ONE 5(12) e15143, 6 p.
SWARTZ, W., U.R. SUMAILA, R. WATSON and D. PAULY. (2010b).
Sourcing seafood for the three major markets: the EU, Japan and
the USA. Marine Policy 34(6): 1366-1373.
ZELLER, D., BOOTH, S., DAVIS, G. & PAULY, D. (2007). Re-estimation of small-scale fishery catches for U.S. flag-associated island
areas in the western Pacific: the last 50 years. Fish. Bull. 105, 266277.
ÍNDICE
40
DOI: 10.14198/MDTRRA2015.ESP.03
Closed areas for fisheries management:
How much is enough?
José L. Sánchez Lizaso
University of Alicante. [email protected]
Abstract
Closed areas are becoming more and more important for fisheries management. Closed areas benefits for stock enhancement and biodiversity conservation are known but, in most
countries, surface closed to fisheries is up to the moment too
small. While it has been proposed to protect 10% of the marine environment for biodiversity objectives, several studies
point that, for fisheries enhancement, it will be necessary to
close at least 20% of marine environment to fisheries. Moreover in most countries, closed areas are biased to protect
some particular habitat like shallow water reefs and it will be
necessary that the protection expand to include all different
ÍNDICE
41
José L. Sánchez Lizaso
marine habitats. A crucial point to expand the network of marine protected areas is the financing sustainability of protected areas. Different ways to obtain the management budget
for protected areas are discussed.
Keywords: Closed areas, Fisheries Management, Stock enhancement, MPAs
Résumé
La fermeture de zones revêt une importance croissante dans
le cadre de la gestion des activités de pêche. Les avantages
que procurent les zones fermées pour l’amélioration des stocks
et la préservation de la biodiversité sont connus, mais dans la
plupart des cas, la superficie fermée par les pays reste à ce
jour bien trop limitée. Bien qu’il ait été proposé de protéger 10
% de l’environnement marin en vue d’atteindre les objectifs
liés à la biodiversité, diverses études indiquent que dans le
cas de la gestion des activités de pêche, il sera nécessaire de
procéder à des clôtures d’au moins 20 % de l’environnement
marin. De plus, la majorité des pays définissent les zones de
manière inégale pour protéger un type d’habitat spécifique
tel que les récifs d’eau peu profonde ; il conviendra d’étendre
la protection et inclure tous les différents habitats marins. La
viabilité financière des zones protégées est un point essentiel
ÍNDICE
42
Closed areas for fisheries management:
How much is enough?
à l’extension du réseau ou de la réserve marine. Différentes
méthodes de collecte de fonds aux fins de maintenance des
zones protégées sont en cours de discussion.
Introduction
C
losed areas to fisheries, also called Marine Protected Areas (MPAs), are becoming more and more important for fisheries management. Although there are
some differences between both terms (MPAs and closed areas) in this paper they have been considered with the same
meaning: an area in which fisheries are completely or partially
restricted. Benefits of closed areas for stock enhancement and
biodiversity conservation are known (Gell & Roberts, 2002).
The cessation or reduction of fishing mortality in marine protected areas (MPAs), promote an increase in abundance and
mean size and age of previously exploited populations, that
produce an increase in the offspring production and the spillover effect to open areas (Sánchez Lizaso et al 2000, Goñi et
al 2008, López-Sanz et al 2011). Benefits for fisheries usually
are observed with an increase in effort and catches in the vicinity of MPAs (Goñi et al 2008, Forcada et al 2009) changes
in the opinion of fishermen with increased support to MPAs
(Badalamendi et al 2000) or some socioeconomic indicators
(Ramos et al 1992; Sánchez Lizaso & Giner, 2001)
ÍNDICE
43
José L. Sánchez Lizaso
Surface to be protected
MPAs are effective for fishery enhancement and conservation objectives, but the relevant question for managers is the
proportion of the area of distribution of each population that
has to be protected. It is necessary to achieve equilibrium
between biomass accumulation inside and biomass export to
open areas (Sánchez Lizaso et al 2000).
Surface to be protected is dependent on the biology of species. Although small protected areas have been effective for
the protection of low mobility species, usually species with
more mobility need larger closed areas (Ramos et al 2002,
Halpern, 2003).
One of the targets of the Convention on Biological Biodiversity is that, by 2020, at least 10% of coastal and marine areas, especially areas of particular importance for biodiversity
and ecosystem services, are conserved through effectively and equitably managed, ecologically representative and
well-connected systems of protected areas and other effective area-based conservation measures, and integrated into
the wider landscape and seascape (https://www.cbd.int/sp/
targets/rationale/target-11/). Currently, about 209000 protected areas cover 15.4% of the planet’s terrestrial and inland
water, and 3.4% of the oceans. 8.4% of all marine areas withÍNDICE
44
Closed areas for fisheries management:
How much is enough?
in national jurisdiction (0-200 nautical miles) are covered with
protected areas, while only 0.25% of marine areas beyond
national jurisdiction are protected (Juffe-Bignoli et al 2014).
However 10% may not be enough and, for fisheries management, best results have been observed with closed areas
that cover higher surface. In Philippines good results have
been obtained with closed areas that cover 10-25% of fishing grounds (Rus & Alcala 1999). Moreover in some fisheries,
it has been stablished as limit reference point, that Spawning Stock Biomass (SSB) or SSB per recruit (SSP/R) do not
fall below some limit relative to the unfished level (Gabriel &
Mace, 1999). One way to achieve this objective is to protect a
significant proportion of the distribution area of each species
(from 20 to 35%). On the other hand, a protected area that
covers 65% of fishing grounds, increased CPUE but reduced
the number of fishers and catches in Kenia (McClanahan &
Kaunda-Arara, 1996).
It also has to be considered that some part of protected areas
may be on partial protection status with some fishing allowed
inside or may be not effectively implemented (paper parks).
It is important to note that the benefits for fisheries are related with the effective reduction in fishing mortality. In this
sense, when we try to estimate surface effectively protected
ÍNDICE
45
José L. Sánchez Lizaso
we should consider only surface completely closed to fishing
and effectively implemented. Partial protected areas should
be weighted by the reduction of fishing mortality that they allow and paper parks should not be considered at all.
Bias in habitats protected
In many countries MPAs are biased to protect some particular habitat (i.e. coastal reefs). These habitats usually have
higher biodiversity or are submitted to more treat. However,
the protection of these habitats only benefits species that use
these habitats as part of their life cycles and that usually are
targeted by artisanal fisheries. But also species that live in
low diversity habitats, like sandy/muddy bottoms, may benefit
from spatial closures. In fact this low diversity habitats usually
support the most important fisheries. The target of surfaces to
be protected has to achieve all marine habitats, from coastal
to open seas, to benefit all marine species.
How to pay the cost of protection?
If the target is to expand the network of closed areas to fisheries and enforce them effectively, the main constraint in many
countries is the financial sustainability of protection (Balmford
et al 2004). Inadequate funding is one of the primary reasons
ÍNDICE
46
Closed areas for fisheries management:
How much is enough?
that many MPAs exist as paper parks. Once a MPA is legally
established, sufficient funding is rarely allocated to fulfill its
mission (Thur 2010). Some protected areas maybe supported
by donors at the beginning but donors are unlikely, however, to sustain finances for MPA management in the long-term
(McClanahan, 1999). In some countries like Spain, management costs are assumed exclusively by the public administration, which implies that, at this moment, there are more
areas waiting the protection than allowable public funding for
expanding the network of protected areas.
Given the limitations on financing coastal protection and resource management, the use of alternative mechanisms to
generate funding should be considered (Edwards, 2009).
Since there are winners and losers of protection (Badalamendi et al 2000), one alternative is that winners pay the cost
of protection. At least for coastal protected areas, revenues
produced by user fees may contribute significantly to management cost. For example, MPAs in the Red Sea produce
20 times more revenues than management costs, and these
revenues are used for maintain the whole network of national parks (including the terrestrial ones), some of them with
low number of visitors (Samy et al 2011). It has also been
observed that a significant percentage of visitors of some ma-
ÍNDICE
47
José L. Sánchez Lizaso
rine protected areas, will accept support financially through
fees their management (Thur, 2010; Durgun, 2013).
But, how to pay enforcement in high sea with no visitors? Enforcement of closed areas in the high sea may be easier and
cheaper than coastal areas since usually fishing is done by
larger vessels that use Vessel Monitoring System (VMS) and/
or Automatic Identification System (AIS) (Mazzini 2013).
Conclusions
–– MPAs are effective for protecting marine biodiversity and
rebuilding stock biomass
–– At least 20 to 30% of all marine habitats have to be closed
to fisheries
–– Sustainable financing is needed to ensure enforcement
References
BADALAMENTI, F., RAMOS, A.A., VOULTSIADOU, A., SÁNCHEZ
LIZASO, J.L., D’ANNA, G., PIPITONE, C., MAS, J., RUIZ
FERNANDEZ, J.A., WHITMARSH, D. and RIGGIO. S. (2000)
Cultural and socio-economic impacts of Mediterranean marine protected areas. Environmental Conservation, 27, 110-125.
ÍNDICE
48
Closed areas for fisheries management:
How much is enough?
BALMFORD, A., GRAVESTOCK, P., HOCKLEY, N., MCCLEAN, C.
J., & ROBERTS, C.M. 2004. The worldwide costs of marine protected areas PNAS 101 (26): 9694-9697.
BOHNSACK, J.A. 1990. The Potential of Marine Fishery Reserves for
Reef Fish Management in the US Southern Atlantic. NOAA Technical
Memo NMFS-SEFC-261. National Oceanic and Atmospheric
Administration, Miami.
DURGUN, D. 2013. Estimation of user fees as a co-financing source
for two Spanish Mediterranean Marine Protected Areas. Master
Thesis University of Alicante 49 pp.
EDWARDS, P.E.T. 2009. Sustainable financing for ocean and coastal
management in Jamaica: The potential for revenues from tourist
user fees Marine Policy 33: 376-385.
FORCADA A., VALLE C., BONHOMME P., CRIQUET G., CADIOU
G., LENFANT P., SÁNCHEZ-LIZASO J. L. 2009. Effects of habitat on spillover from marine protected areas to artisanal fisheries.
Marine Ecology Progress Series; 379: 197-211.
GABRIEL, W.L. and MACE, P.M. 1999. A review of biological reference
points in the context of the precautionary approach. Proceedings,
5th NMFS NSAW. NOAA Tech. Memo. NMFS-F/SPO-40:34:45
GELL, F.R. and C.M. ROBERTS. 2002. The Fishery Effects of Marine
Reserves and Fishery Closures. WWF-US, 89 pp.
GOÑI R., ADLERSTEIN, S., ALVAREZ-BERASTEGUI, D., A.
FORCADA, O. REÑONES, G. CRIQUET, S. POLTI, G. CADIOU,
ÍNDICE
49
José L. Sánchez Lizaso
C. VALLE, P. LENFANT, P. BONHOMME, A. PÉREZ-RUZAFA, J.
L. SÁNCHEZ-LIZASO, J. A. GARCÍA-CHARTON, G. BERNARD,
V. STELZENMÜLLER, S. PLANES (2008) Spillover from six western Mediterranean marine protected areas: evidence from artisanal
fisheries. Marine Ecology-Progress Series 366, 159-174.
HALPERN, B.S. 2003. The impact of marine reserves: do reserves
work and does reserve size matter? Ecological Applications, 13(1)
Supplement: S117–S137.
JUFFE-BIGNOLI, D., BURGESS, N.D., BINGHAM, H., BELLE,
E.M.S., DE LIMA, M.G., DEGUIGNET, M., BERTZKY, B.,
MILAM, A.N., MARTINEZ-LOPEZ, J., LEWIS, E., EASSOM,
A., WICANDER, S., GELDMANN, J., VAN SOESBERGEN, A.,
ARNELL, A.P., O’CONNOR, B., PARK, S., SHI, Y.N., DANKS,
F.S., MACSHARRY, B., KINGSTON, N. (2014). Protected Planet
Report 2014. UNEP-WCMC: Cambridge, UK.
LÓPEZ-SANZ, À., STELZENMÜLLER, V., MAYNOU, F., SABATÉS,
A. 2011 The influence of environmental characteristics on fish larvae spatial patterns related to a marine protected area: The Medes
islands (NW Mediterranean). Estuarine, Coastal and Shelf Science
92: 521-533.
MAZZINI, M. 2013; Análisis de la distribución del esfuerzo pesquero de la flota arrastrera en el área contigua a la Zona de Veda
Permanente de la Zona Económica Exclusiva Argentina. Master
Thesis University of Alicante 91 pp.
ÍNDICE
50
Closed areas for fisheries management:
How much is enough?
MCCLANAHAN, T.R. and KAUNDA-ARARA, B. (1996) Fishery
Recovery in a Coral-Reef Marine Park and Its Effect on the Adjacent
Fishery. Conservation Biology 10, 1187-1199.
MCCLANAHAN,TR. 1999. Is there a future for coral reef parks in poor
tropical countries?. Coral Reefs; 18: 321-325.
RAMOS ESPLÁ, A.A., SÁNCHEZ-LIZASO, J.L. and BAYLE, J. T.
(1992) Impact biologique et économique de la Réserve marine de
Tabarca (Alicante, Sud-Est de l’Espagne). Medpan News, Fr., 3:
pp. 59- 66.
RAMOS-ESPLÁ, A. A., VALLE-PÉREZ, C, BAYLE-SEMPERE, J.T
Y SÁNCHEZ-LIZASO, J.L. (2004). Áreas Marinas Protegidas
como herramientas de Gestión Pesquera en el Mediterráneo (Area
COPEMED). Serie Informes y Estudios COPEMED nº 11.
RUS G. R; ALCALA A. C. 1999. Management histories of Sumilon
and Apo Marine Reserves, Philippines, and their influence on national marine resource policy Coral Reefs 18: 307-319.
SAMY, M., SÁNCHEZ LIZASO, J. L., and FORCADA, A. (2011).
Status of marine protected areas in Egypt. Animal Biodiversity and
Conservation, 34(1), 165-177.
SÁNCHEZ LIZASO, J.L. and GINER, C. (2001) Estudio comparativo
de la flota artesanal de Tabarca. In Actas de las I jornadas internacionales sobre reservas marinas. Murcia 24 al 26 de marzo 1999.
Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain. pp.
227-232.
ÍNDICE
51
José L. Sánchez Lizaso
SÁNCHEZ LIZASO, J.L., GOÑI, R., REÑONES, O., GARCÍACHARTÓN, J.A., GALZIN, R., BAYLE, J.T., SÁNCHEZ-JEREZ,
P., PÉREZ-RUZAFA, A. y RAMOS, A.A. 2000. Density dependence in marine protected populations: A review. Environmental
Conservation, 27: 114-158.
THUR, S. M. 2010. User fees as sustainable financing mechanisms
for marine protected areas: An application to the Bonaire National
Marine Park Marine Policy 34: 63-69.
ÍNDICE
52
DOI: 10.14198/MDTRRA2015.ESP.04
MIHARI: Networking coastal communities to
manage Madagascar’s small-scale fisheries
sustainably
Riambatosoa Rakotondrazafy Andriamampandry
MIHARI Network
Lot II M 98 H Antsakaviro
+261 34 20 340 23
[email protected]/ [email protected]
Abstract
The past decade has seen a groundswell of interest in community based marine conservation in Madagascar, with locally managed marine areas (LMMAs) being championed at the
highest levels of government, and now covering over 12%
of Madagascar’s seabed. Given Madagascar’s weak infrastructure, most of the country’s LMMA are located in remote
areas, thereby presenting practical barriers to exchange and
communication to discuss common challenges. The MIHARI
ÍNDICE
53
Riambatosoa Rakotondrazafy Andriamampandry
network was created as a means of linking up isolated coastal
communities to allow community leaders to share ideas and
successful models through peer-to-peer learning, as well as
to represent the interests of small-scale fishers at a national level; in particular fisheries policy development. Network
members include all LMMA communities and the non-governmental organizations that support them. Government authorities are regularly consulted in the network’s activities. While
the network is still only three years old, and in the early stages of development, much progress has already made. For
instance, annual learning exchanges between LMMA communities have taken place, culminating in the third national
MIHARI forum in October 2015. The past year has also seen
the launch of regional forums, of which one was organized in
2014 and four organized in 2015. Priorities going forward are
to reinforce the structure and independence of the network,
ensure the active participation of communities, and secure
sustainable sources of funding for the network over the longterm.
Keywords: LMMA, learning Network, community based natural resources management, small-scale-fisheries, partnerships, peer to peer learning exchange.
ÍNDICE
54
MIHARI: Networking coastal communities to manage
Madagascar’s small-scale fisheries sustainably
Résumé
Au cours de la dernière décennie, Madagascar a développé
un intérêt croissant pour la conservation communautaire des
ressources marines. Les Aires Marines Gérées Localement
(AMGLs) sont, notamment, soutenues au plus haut niveau
par le gouvernement, et couvrent désormais plus de 12% des
fonds marins de Madagascar.
Compte tenu de la faiblesse des infrastructures du pays, la
plupart des AMGLs sont situées dans des régions isolées,
rendant ainsi difficile les échanges et la communication relatifs aux défis communs qu’elles rencontrent. Le réseau MIHARI a été créé comme un moyen de connecter les communautés côtières isolées pour permettre à leur dirigeants de
partager des idées et des modèles de réussite par l’apprentissage entre pairs, ainsi que pour représenter les intérêts des
pêcheurs traditionnels au niveau national ; en particulier dans
le cadre du développement de la politique des pêches. Les
membres du réseau comprennent toutes les communautés
AMGLs et les organisations non gouvernementales qui les
soutiennent. Aussi, les autorités gouvernementales sont régulièrement consultées au sujet des activités du réseau.
Des progrès significatifs ont déjà été réalisés, alors que le réseau ne date que de trois ans et qu’il n’est qu’aux premières
ÍNDICE
55
Riambatosoa Rakotondrazafy Andriamampandry
étapes de son développement. Par exemple, des réunions
d’échanges annuels d’apprentissage entre les communautés
AMGLs ont eu lieu avec, en octobre 2015, le troisième forum national MIHARI. Au cours des dernières années, des
forums régionaux ont également vu le jour, dont l’un organisé
en 2014 et quatre en 2015.
Les futures priorités sont de renforcer la structure et l’indépendance du réseau, d’assurer la participation active des
communautés et d’assurer des sources de financement durables pour le réseau.
Mots clés : Mots clés : AMGL, réseau d’apprentissage, gestion communautaire des ressources naturelles, pêches à petite échelle, partenariats, échanges de connaissances entre
pairs.
Introduction
M
adagascar’s marine ecosystems harbour globally important marine biodiversity, and underpin the
livelihoods and food security of more than 256,000
traditional fishers living along Madagascar’s 4,828 km coastline (ONAR, 2005). These so-called small-scale fishers include communities who are amongst the poorest people on
earth, and many of the island’s coastal communities have no
ÍNDICE
56
MIHARI: Networking coastal communities to manage
Madagascar’s small-scale fisheries sustainably
alternative to fishing for survival. Over recent decades these
critical ecosystems have been decimated by overfishing,
sedimentation and climate change. Declining catches, rapid
population growth and a lack of livelihood alternatives have
pushed traditional fishers into more intensive fishing; consequently, speeding the collapse of stocks and trapping them
in a poverty cycle. Given the limited capacity of the national
government for fisheries management, there is great urgency
for practical efforts to support communities to manage and
rebuild their fisheries at a local level. From 2003, Non-Governmental Organizations (NGO) working with fishing communities began developing the concept of Locally Managed Marine Areas (LMMAs) in Madagascar in response to community
needs. LMMAs are areas of nearshore waters that are fully or
largely managed by coastal communities, which are empowered to create and implement management rules. Due to their
isolation, and lack of environmental management experience,
communities in Madagascar often lack knowledge of processes available to them to secure rights for managing their resources effectively. The MIHARI network was created as a
way of linking up isolated coastal communities to allow community leaders to share ideas and successful models through
peer-to-peer learning, as well as to represent the interests of
small-scale fishers in national policy development.
ÍNDICE
57
Riambatosoa Rakotondrazafy Andriamampandry
Evolution of community based management in
Madagascar
Madagascar’s first LMMA was introduced in 2005 and the initiative has since gained momentum among communities, government authorities and conservation organizations. These
LMMAs are found throughout Madagascar and contain a rich
diversity of marine and coastal environments from offshore
coral archipelagos to coastal mangrove forests and a broad
range of targeted fisheries and people dependent on them.
There are now over 100 discrete community-based marine
management efforts around Madagascar’s coasts, covering
more than 12,000 km2 and over 12% of the island’s seabed.
Madagascar’s LMMAs range in size from a few hectares to
the vast 4,500 km2 Barren Isles protected area, the country’s
largest protected area, and the largest community managed
MPA in the entire Indian Ocean. In total, the marine area covered by LMMAs in Madagascar surpasses that of the national
parks network (under management by Madagascar National
Parks service) by around a third. The rapid expansion of local
marine management was responsible for Madagascar meeting its 2003 Durban commitment to triple the coverage of its
protected areas in 2014.
ÍNDICE
58
MIHARI: Networking coastal communities to manage
Madagascar’s small-scale fisheries sustainably
LMMA in Madagascar use a range of legal mechanisms to
secure local management rights:
i. Co-managed protected areas under Madagascar’s Protected Area System (SAPM). This type of LMMA is classified as Category V or VI under the International Union for
Conservation of Nature (IUCN).
ii. Areas of coast and ocean governed by communities using
traditional laws, called Dina.
iii.Areas of mangrove forest where management rights have
been formally transferred to community associations with
legal contracts, through a legal framework called “Gestion
Locale Securisée” (Gelose).
These LMMAs unite resource users in the collaborative management of inshore resources, and employ a range of fisheries management tools including temporary closures for certain species, permanent no-take zones, bans on particular
gears, alternative livelihoods initiatives, and mangrove forest
restoration management. At a growing number of sites, these
grassroots efforts have helped many communities secure local fisheries management rights and progress towards the
successful management of economically important fisheries.
ÍNDICE
59
Riambatosoa Rakotondrazafy Andriamampandry
Figure 1: Map showing the location of LMMAs in Madagascar.
LMMA communities facing challenges
Despite the important progress made towards coastal protection and small-scale fisheries management, the sustainability of local efforts to safeguard marine biodiversity faces
a number of challenges. Malagasy coastal communities are
amongst the poorest on earth, depending on the exploitation
of fisheries resources for income, livelihoods and food (World
Bank, 2013). The poverty and low level of education of many
ÍNDICE
60
MIHARI: Networking coastal communities to manage
Madagascar’s small-scale fisheries sustainably
isolated coastal communities leads to a low capacity and resource management experience, causing severe practical
challenges in the development of community based conservation efforts. The voice of small-scale fishers is also rarely
represented in high-level policy and decision-making.
No legislative structure currently exists which pays homage
to the LMMAs. The array of legal mechanisms which serve
to develop management rights to local communities including Gelose, Dina and Protected Area are not inclined to the
LMMA perspective, neither were they shaped with LMMAs in
mind. Although there is a lack of legal framework that recognizes the existence of LMMA, the communities are really
motivated towards resource management and Community
based management fisheries is supported by the Malagasy
Government. In addition to that, due to the chronic lack of
infrastructure in Madagascar, most of LMMA are located in
isolated areas, limiting their opportunities and market accessibilities to sell their catches. They have to rely on middlemen
to collect their catches that are sold at a very low price. The
isolation of the communities has also impacted their access to
alternative livelihoods, which limits their activities to be based
and focused on fisheries only. The remoteness of LMMA also
creates limitations preventing exchange with other LMMA
managers in learning successful models and best practices.
ÍNDICE
61
Riambatosoa Rakotondrazafy Andriamampandry
Networking communities through MIHARI
Located in remote coastal areas, the majority of LMMA-implementing communities in Madagascar had limited opportunities for communication with other LMMA managers prior
to the establishment of the MIHARI network. Inspired by the
Pacific LMMA network (www.lmmanetwork.org), Madagascar’s first national LMMA forum was held in June 2012 bringing together community representatives from 18 LMMAs with
the aim of addressing these problems through peer-to-peer
learning and sharing of experiences. This event resulted in
the creation of Madagascar’s national LMMA Network called:
“MIHARI”, an acronym, which stands for “MItantana HArena
an-dRanomasina avy eny Ifotony”. MIHARI is a platform bringing together all coastal communities involved with marine resource management and the organizations that support them.
The network currently includes over 100 individual LMMAs
with discrete management structures and rules supported by
more than 10 partner institutions. The network structure is
developing organically, but relies on the active engagement
of the range of partners. A coordinator at the national level
supports partner organizations to coordinate activities at the
local level and communicate with communities. Since its creation, MIHARI has grown as a way of promoting the spread
ÍNDICE
62
MIHARI: Networking coastal communities to manage
Madagascar’s small-scale fisheries sustainably
and successful development of LMMAs, and aims to address
the systemic challenges faced by communities by facilitating
and supporting collaboration amongst a range of actors, to
foster the exchange of best practices, to increase the visibility
and legitimacy of LMMA, to reinforce the voices of coastal
communities, to strengthen the capacities of coastal sharing
know-how and experiences between fishers, and to advocate
for the interests of LMMA communities in national policy.
The MIHARI Network’s achievements so far
The core activities of the MIHARI network are to exchange
visits between fishing communities and forums of LMMA managers. Fisher exchanges are a powerful tool in the spread of
fisheries management practices and governance. Informal
peer-to-peer experience sharing has been an integral part of
the spread of community-led octopus fishery management
measures along the southwest coast of Madagascar. We
have also witnessed the role of these exchanges in building
leadership and engagement in management efforts.
Further to that, regular forums bring together community
leaders representing LMMAs all around Madagascar’s coast.
These forums are being held both at the regional and national
level. They allow leaders to share their experiences, success
ÍNDICE
63
Riambatosoa Rakotondrazafy Andriamampandry
stories and challenges encountered; in addition, they foster a
sense of community spirit and solidarity between LMMA communities. Three annual national forums have been organized
so far, and this year, four regional forums were held grouping
communities with a similar context. Ongoing communication
tools through local radio are being developed to maintain regular communication and sharing of stories outside of these
events.
At the national policy level, the MIHARI network has contributed to new national fisheries policy and protected area policy
representing the interests of small-scale fishers. The network
is also working with Government ministries to develop legislation that reinforces the legal status of LMMAs.
Through regular consultation with LMMA implementing communities network partners now have a better understanding
of the challenges they face and the capacity gaps and support
they need, and the network is commissioning specialist training in priority areas for community leaders.
National ambitions for rights-based fisheries
management
At the 2014 World Parks Congress in Australia, Madagascar’s President Hery Rajaonarimampianina committed to tri-
ÍNDICE
64
MIHARI: Networking coastal communities to manage
Madagascar’s small-scale fisheries sustainably
ple the total coverage of marine protected areas, providing
an unprecedented climate of national support for this growth
in community-based management of small-scale fisheries.
The island is also in the process of revising its legal code for
community-based fisheries management to help protect and
promote the rights of small-scale fishers to secure management authority over local fisheries resources. Other coastal
states in the Indian Ocean region are now seeking to emulate
MIHARI’s experience, with growing interest in the role LMMA
networks can play in supporting locally led marine conservation efforts across the western Indian Ocean.
Next steps for the MIHARI network
The priorities for the MIHARI network in the next phases of
its development are to continue to increase engagement and
ownership of the network from community managers, while
building the network’s capacity and sustainability in the long
term. To do this, a strategy has been developed that includes:
–– Building the MIHARI network’s presence in key regions
through regional hubs that will be able to maintain momentum at a local level and facilitate coordination and communication.
ÍNDICE
65
Riambatosoa Rakotondrazafy Andriamampandry
–– Focusing on capacity building of community leaders in priority subjects such as: fishery management measures, engaging with the private sector, governance and leadership;
and using regional hubs to extend this support to sites with
less support from technical partners.
–– Reinforcing the structure and sustainability of the network
by increasing community ownership, independent fundraising and raising the profile at the national level.
Conclusion
While top down management measures have often failed to
bring about positive engagement from communities; Madagascar’s rapid expansion of community-led marine management efforts over the last decade has been driven in large part
by community exchanges and dialogue, facilitated by supporting partner organizations. The surge in locally-led marine
management seen in Madagascar over the past decade has
demonstrated the enormous value of community exchanges
and networking in building capacity and solidarity for local fisheries management among community groups from different
regions, economies and fisheries. The ‘peer networking’ approach has shown its effectiveness in inspiring, advising and
mentoring communities in the adoption of local fisheries man-
ÍNDICE
66
MIHARI: Networking coastal communities to manage
Madagascar’s small-scale fisheries sustainably
agement efforts, both in Madagascar and further afield. As
the civil society network representing the interests of LMMA
communities, the MIHARI network’s experiences are providing invaluable input in helping shape ongoing national efforts
to safeguard the rights of small-scale fishers. Madagascar’s
evolving LMMA network provides critical learning in the role
that a nascent national network can play in supporting and
championing the needs of marginalized coastal populations
in Madagascar’s unusual context: a large, populous, highly
biodiverse country facing so many entrenched economic, environmental, infrastructural and governance challenges. Its
experiences help highlight the degree to which a small and
largely informal civil society network – with no official national
mandate – can succeed in advocating for community-based
marine and fisheries management, specifically through its
progress in influencing and shaping the Government’s stated commitment to act decisively in reinforcing and expanding
LMMAs in Madagascar.
Acknowledgement
We would like to thank the MacArthur Foundation who funded
the MIHARI Network for the year 2015. We would also like to
thank all members of the Network, namely LMMA communi-
ÍNDICE
67
Riambatosoa Rakotondrazafy Andriamampandry
ties and the supporting organizations that contributed to the
development and success of the Network.
The authors also acknowledge the input of the Editors that
helped improve the manuscript.
References
BARNES-MAUTHE, M., OLESON, K. L., & ZAFINDRASILIVONONA,
B. (2013). The total economic value of small-scale fisheries with a
characterization of post-landing trends: An application in Madagascar with global relevance. Fisheries Research, 147, pp.175-185.
ONAR. (2005). Madagascar, Tulear fishing communities support project (PACP) appraisal report. Department of Agriculture and Rural
Development for North, east and south regions
WORLD BANK. (2013). Madagascar Emergency Food Security and
Reconstruction Project. World Bank Report No: ICR2816.
ÍNDICE
68
DOI: 10.14198/MDTRRA2015.ESP.05
Analysis of environmental parameters effects
on the spatial and temporal dynamics of tropical
tuna in the EEZ of Madagascar: coupling remote
sensing and catch data
Marcellin Roandrianasolo Tsihoboto1,
Bemiasa John1, Fanazava Rijasoa2
Institut Halieutique et des Sciences Marines, Université de Toliara,
Route du Port Mahavatse II – Toliara 601 – Madagascar
2
Centre de Surveillance de Pêche de Madagascar, Ministère dea la
Pêche et des Ressources Halieutiques- Antananarivo 101-Madagascar
1
Abstract
Potential fishing zone can be identified from the information
collected regarding the relationship between the environmental factors and distribution areas of the species. In this context, the effects of environmental parameters on the spatiotemporal dynamics of yellowfin tuna, Bigeye tuna, skipjack
and albacore were analysed in the EEZ of Madagascar from
ÍNDICE
69
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
2005 to 2013 using a modelling approach between remote
sensed environment and monthly catch data. The result of
this analysis showed that (1) there is a positive relationship
between the catches data and environmental parameters, (2)
the sea surface temperature (SST) and chlorophyll-a are the
main parameters that influence the distributions, (3) the most
productive areas are located in the northwest and east central
part of the EEZ and (4) these areas are already operational
and well known by tuna fishermen. Finally, for the initiative to
an optimal resource management, spatial distribution predictive maps of each studied species were produced. The limit of
these results and suggestions are discussed.
Keywords: Madagascar, environmental parameters, dynamic, tropical tuna, remote sensing, modelling
Resume
Titre : Analyse des effets des paramètres environnementaux
sur les dynamiques spatiotemporelles des thons tropicaux
dans la ZEE Malagasy : couplage télédétection et données
de captures
L’identification d’une zone potentielle de pêche peut être obtenue à partir des informations sur les relations entre les facteurs de l’environnement et les aires de répartition d’une es-
ÍNDICE
70
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
pèce. Dans ce contexte, les effets des paramètres environnementaux sur les dynamiques spatiotemporelles du thon albacore, Patudo, Listao et germon ont été analysés dans la ZEE
de Madagascar entre 2005 et 2013 à l’aide d’une approche
de modélisation entre les données mensuelles de captures
et des images satellites. L’analyse de ces données a montré
que (1) il existe une corrélation entre la distribution des captures et les paramètres environnementaux, (2) la température
de surface de la mer (TSM) et la chlorophylle-a sont les principaux paramètres qui influence les distributions des thons,
(3) les zones les plus productives se situent dans la partie
Nord-Ouest et Centre Est de la ZEE et que (4) ces zones
sont déjà opérationnelles et bien connues par les thoniers.
Enfin, dans l’initiative d’une gestion optimale des ressources,
des cartes prédictives de la distribution spatiale de chaque
espèce étudiée ont été réalisées. Les limites de ces résultats
et les mesures à prendre sont discutées.
Mots-clés : Madagascar, paramètres environnementaux, dynamique, thons tropicaux, télédétection, modélisation.
Introduction
T
una fishes are among the most valuable of the Indian
Ocean’s fishery resources. This fishery has been practiced by coastal populations since millennia. Since the
ÍNDICE
71
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
1950s, tuna catches have been increasing, but the most important catches have been noticed during the past thirty years
(IOTC, 2015). Report from IOTC relates that in 1980, the total
catch of tuna (and related species) from the Indian Ocean was
just under 350,000 tonnes. In 2006, catches peaked at over
1.7 million tonnes. That was an increase of 390%, or an average annual growth rate of 6.3%, sustained over 26 years. The
same report noticed that total catches have declined since
2006, largely due to external factors including the world economic crisis and the Somali pirate situation. Between 20082012 the average annual catch of tuna (and related species)
in the Indian Ocean was just over 1.5 million tonnes. Almost
1.1 million tonnes (71%) of this came from the western and
central Indian Ocean. In 2006, for whole the western and central Indian Ocean, the recorded total catches of tuna, seerfish
and billfish increased to a maximum of almost 1.37 million
tonnes. The recorded catch in 2012 was 1.16 million tonnes.
As for the catch weight, the main species caught are skipjack
and yellowfin tuna (IOTC, 2015). Although landed in smaller
quantities, bigeye, albacore and particularly southern bluefin
tuna are highly prized because of their higher unit value.
Within Madagsacr Exclusive Economic Zone (1 1410 000
km2), tuna fishing is one of the most important of the twelve
ÍNDICE
72
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
main fisheries identified for sea fishing (MPRH, 2012). Tuna
production is estimated at 10 000 tonnes per year (Soumy,
2004). Most of the catches are given by the foreign vessels
(mainly from the EU) which participate in this activity in the
framework of international aggrements. Catch data analysis
from various sources indicates that the worldwide landings of
tuna have doubled in each decade since 1950 and exceeded
2 million mt per year in 1980s. Recent report (Wesley, 1991)
noted that increases in catches of skipjack and yellowfin tuna
in the Indian Ocean have been particularly great since 1982.
However, the system for collecting statistics on fisheries other
than foreign industrial tuna fishing is deficient or non-existent.
This situation could lead to the collapse of the tuna stocks
in the region. In addition to these, the accelerated growth of
the human population on this planet is accompanied by an
increasingly strong pressure on natural resources, including
fishery resources. Many fisheries are already overexploited
and only allow catches less than those they would manage
(Fonteneau, 1997). As a result of this deficiency in the management of fisheries resources, many species catches could
decrease further in the future; tunas that pass during their
migration in Malagasy water are no exception.
ÍNDICE
73
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
Thirty government officials are involved in the management
of the exploitation of tuna in Madagascar but the imbalance
in the operation can be observed (Ralison and Minten, 2003)
because of technical difficulties, incompetence in the field and
the inability of the national tuna fishing to exploit optimally
these resources. At the current stage of research, the problem is contained in the following question: Is it possible to
discern a preferentially areas of tunas by using easily measurable environmental parameters (Marsac, 1989)?
Several studies on tuna fishing have been carried out in the
western Indian area, particularly for yellowfin tuna (eg. Marsac, 1985; 1986; 1987-a and b; 1988; 1989; 1990; 1991;
1995), but few are treating the biological aspects linked to environmental parameter variability. Marsac (1987-a, b, c; 1988;
1990); Nishida (1995) and Ianelli (1995) started using tuna
catch data to analyze the relationship between tuna fishing
distribution areas and environmental conditions. Up to now,
no investigations have been carried out within the Madagascar EEZ and dealing the subject. Being given that the actual
areas of distribution of tuna industrial fishing fleets within the
Madagascar EEZ are mainly concentrated in the North West
and east coast, probable new tuna potential fishing zones
(PFZ) exists in the remaining zones around the island. There
ÍNDICE
74
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
is a need to investigate these new PFZ in order to increase
and sustain the income generated by tuna industrial fishing
activities. This paper describes the methodology how to identify new PFZ. Catch data from tuna industrial fishing will be
coupled with environmental parameters (SST, chlorophyll-a)
to establish a cartographic description of the spatial and temporal distribution of four commercial tuna species (Skipjack,
Yellowfin, Bigeye, Albacore) in the EEZ Madagascar in order
to identify new potential fishing zones, which may contribute
to the optimal management of these resources.
Material and methods
Tunas distribution is not uniform in time and space (Berges et
al., 1989). The abundance of food and temperature are cited
among the main factors. As migrators and predators, tunas
have no boundaries, following the favourable places for their
survival.
Data Sources
Catch data
The catch data used in this study are from tuna fishing trips
between 2005 and 2013 in the Exclusive Economic Zone of
Madagascar of yellowfin tuna (Thunnus albacares), bigeye
ÍNDICE
75
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
tuna (Thunnus obesus), albacore tuna (Thunnus alalunga)
and skipjack (Katsuwonus pelamis). They were provided by
the Madagascar Fishing Monitoring Center that collects them
from the ships logbooks or “logbooks”. In general, when seated is made, the ship’s captain systematically note in the logbook the geographical position of the vessel (longitude, latitude in degree-minute), the date of the catch, the name of the
species caught (yellowfin, bigeye and skipjack), the category
of catches by species and an estimate of the tonnage carried.
The satellite data
Environmental data used in this study are from MODIS Aqua
Images. MODIS is an instrument of observation of the Earth
on board the satellites Terra (EOS AM) and Aqua (EOS PM).
MODIS images can be downloaded free of charge from NASA
website - Goddard Earth Sciences Distributed Active Archive
Center (DAAC) (Url 1) (1). MODIS collects Sea Surface Temperature (SST) and primary production (chlorophylls), which
are available as pre-processed data: Level 1 (L1), 2 (L2) and
3 (L3) (Url 2) (2). But, Level 3 was the only database used
during the study, with a spatial resolution of 4.86 km. It has
sufficient resolution to describe the variability of the environment and to analyze the distribution of the catches.
ÍNDICE
76
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
Processing of satellite images
The images (L3) have a broad global coverage. Therefore,
prior to processing the data, each study area was cropped out
of the image source. Figure 1 shows the study area.
All products have been processed using ArcGIS software
especially through MEGT tool (Marine Geospatial Ecology
Tools). The latter is a freeware, designed by the Marine Laboratory, Duke University (Beaufort, North California). It is avail-
Figure 1: Study area, EEZ of Madagascar
ÍNDICE
77
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
able via the web (Url 3) (3). ArcGIS can read images directly
from MODIS and ensure the conversion of the metadata in
HDF formats into Raster formats (Geo Referenced), and pixel
values ​​in degrees centigrade for temperature (°C) (SST) or
mg/m3 for Chlorophyll-a and project images in the world geographic coordinate system WGS 84.
Approach and model-analysis of the distribution of
species
Maxent was used to model the distribution of the species of
interest (Philips et al., 2006). This program identifies the areas
where tunas are most likely to occur, and the environmental
conditions comparable to the tuna ecological niche. Maxent
works with georeferenced data and detailed environmental
factors data.
The points of presence
Presence points were extracted from catch data (see previous
section). They were organized into Excel and then converted
into modelling formats programs adapted to the species distribution. In this study, the data is imported as a CSV file (* .csv).
They include following basic information: the taxonomic name
of the species and the coordinates (longitude and latitude)
from its point of presence.
ÍNDICE
78
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
The environmental variables
There are already databases presented as an approximate
value of the ecological niche known as “climate envelope” that
provide detailed climate information (based on the interpolation of data collected worldwide by climate measuring stations). They are available on the Bio oracle website (Url 4) (4).
Among the parameters commonly used to describe the environment and distribution of tuna: SST, Chlorophylls, bathymetry, dissolved oxygen, salinity, and sea surface current were
used in this study to define where to meet tuna species (Stretta and Dufour, 1973; Stretta et al., 1973; Stretta, 1977;).
Results
Seasonal variation in catches
Tuna fishing in the Malagasy EEZ are manifested throughout the year from January to December. The Skipjack (Katsuwonus pelamis) is the species that dominates the catches of
Malagasy tuna (Figure 2). For Bigeye, Skipjack and yellowfin
tuna species, their total catches show that the highest abundances are found from March to May with a peak in April;
however for albacore species, the peak is in November. Generally a small catch is observed on July and September.
ÍNDICE
79
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
Figure 2: Seasonal variation of total catch from 2005 to 2013
Spatial distribution of catches
The most important capture is observed from March to May,
and focused in the northwestern part of the EEZ (Figure 3).
Most of which consists of Skipjack (Katsuwonus pelamis)
sometimes mixed with yellowfin (Thunnus albacares). The
figure also shows that the capture of albacore is localized
particularly in the east-central part of the EEZ from October
to December. Finally, Bigeye tuna are found, in minimum
ÍNDICE
80
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
±
Legend
Total catch (ton)
13
Thunnus albacares
Thunnus alalunga
Katsuwonis pelamis
Thunnus obesis
EEZ
Figure
3: Space distribution of total catch from 2005 to 2013
ÍNDICE
81
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
amount, at almost in the whole area of ​​the EEZ throughout
the year.
Oceanographic data
Sea Surface Temperature (SST ) distribution
The distribution of sea surface temperature (SST) is not homogeneous throughout Madagascar’s EEZ, with a fairly pronounced seasonal variation (Figure 4). The west coast is
warmer compared to the east coast and the north-western
part is the warmest.
Chlorophylls (CH-a) distribution
The distribution of chlorophyll-a concentration also suggests
a seasonal delineation. The west coast is more productive
comparing to the east coast (Figure 5) and the important biomass is located in the south-western part.
Sea surface temperature and chlorophylls values
The value of the temperature ranges from 24 °C to 28 °C (Figure 6). From January to April, the temperature remains stable
in the range of 28 °C. From May it falls largely to achieve its
minimum in August (of approximately 24 °C). There is also a
rise in the value of SST from September until December.
ÍNDICE
82
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
Legend
19
.1
-2
4.
9
24
.9
-2
5.
8
25
.8
-2
6.
6
26
.6
-2
7.
4
27
.4
-2
8.
3
28
.3
-2
9.
0
29
.0
-2
9.
9
29
.9
-3
2.
6
Sea Surface Temperature (°C)
±
Figure 4: Space distribution of Sea Surface Temperature, monthly
mean from 2005 to 2013
ÍNDICE
83
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
5
9
39
0.
-0
36
0.
-4
6
.3
3
.3
.3
-0
-0
3
33
0.
0.
7
.3
.2
-0
-0
27
24
0.
0.
1
4
.2
.2
-0
-0
18
21
0.
5
8
.1
-0
15
0.
0.
2
.1
0.
12
-0
.1
-0
0.
09
-0
06
0.
0.
04
-0
.0
.0
6
9
Legend
Chlorophyll -a (mg/m^3)
±
Figure 5: Space distribution of chlorophyll-a, monthly mean from
2005 to 2013
ÍNDICE
84
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
Figure 6: Seasonal variation of SST and Chlorophyll-a, monthly
mean from 2005 à 2013 in the whole Malagasy EEZ
An increase in the concentration of Chl-a was observed from
January with a maximum in April. The average concentration
was estimated between 0.15 to 0,17 mg/m3 (Figure 6). The
concentration of Chl-a remains stable in May and goes back
up to reach a second peak in July. Then, it is decreasing again
to a value less than 0.12 mg/m3 from September to December.
ÍNDICE
85
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
Modelling
According to all variables used (Table 1), the most important
parameters for the model are temperature distribution and
chlorophyll content for the four models.
The response curve for the temperature distribution (Figure
7) shows that the probability of presence of Thunnus obesis,
Thunnus albacares and Katsuwonus pelamis are stronger for
a temperature value between 28 °C and 29 °C. On the contrary, in these models, the probability of finding the three species
decreased for temperature values below 27 °C.
Percentage of contribution in the model (%)
Environment variables
Katsuwonus
_pelamis
Thunnus_
albacares
Thunnus_
obesis
Sea surface temperature
Thunnus_
alalunga
83.7035*
56.7452*
63.5436*
7.0135
Chlorophyll-a
6.5256
24.9842*
11.5747
80.7812*
Bathymetry
4.0028
5.6035
5.9243
2.9755
Sea surface current speed
3.6093
0.5023
14.0997
0.1473
Activate photosynthetic
radiation
0.5291
9.4905
3.0015
0.8287
Salinity
1.3418
1.1228
0.8944
7.4989
Ultraviolet
0.2879
1.5514
0.806
0.7549
0
0
0.1558
0
Coral reef presence
Table 1: Contribution percentages for each environment variable by
Maxent.
ÍNDICE
86
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
Figure 7: Response curve according to the SST
These results are not the same for the model applied to Thunnus alalunga where the probability of presence is strongest to
a temperature threshold between 26 °C to 26.5 °C. However,
ÍNDICE
87
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
beyond this threshold the probability of finding the species
remains relatively low (Figure 7).
The important environmental variable after the temperature is
the chlorophyll-a. For the three species: Katsuwonus pelamis,
Thunnus obesis, Thunnus albacares the peak is observed at
a concentration of 0.15 mg/m3 (Figure 8). Similar results were
found for the model applied to Thunnus alalunga but with a
lower value (0.08 mg /m3).
Graphic models
Models show that the probability of finding tuna is stronger in
the West Coast than in the East Coast of Madagascar’s EEZ
(Figure 9).
In one side there are some particular groupings areas evaluated by the model, as favourable for the three species: Katsuwonus pelamis, Thunnus albacares, Thunnus obesis, located
in the northwest of the EEZ. These areas correspond exactly
to the geographic coordinates from 12.5 to 16.5° S and 42.5
to 48° E. It was also noted that areas with higher temperature
are considered favourable for the distribution of these species. In the other side, the model applied to Thunnus alalunga
(figure 9) showed that the most likely areas to find the species are in the east-central part of the EEZ, specifically from
ÍNDICE
88
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
Figure 8: Response curve according to the chlorophyll-a
ÍNDICE
89
ÍNDICE
3.
9
10
20
30
40
50
60
70
80
90
10
0
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
Figure 9: Predictive map modelling (MAXENT)
90
±
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
18 to 24° S and 48 to 53° E. These areas are located in the
fishing zone of longliners.
Discussion
Temporal and spatial distribution of catches
The monthly evolution of tuna catch showed two different periods (March-April-May and October-November-December).
Each period presents a strong spatial homogeneity of catch
from the same geographical area. This result is coherent
with the work of the description of the seasonal nature of this
fishery by several authors (Fonteneau, 1997; Randriambola,
2012; Ramanantsoa, 2013).
The study shows that these two periods correspond to two
different fishing strategies. From February to May, seiners
mainly target banks Skipjack, Yellowfin and Bigeye tuna in
the north-western part of the island. For longliners, even if
they are operational in all seasons, the essential of their catch
is located in the east-central part of the island from October to
December, and the most targeted species are albacore.
Tropical tuna species are migratory pelagic species, which
can travel great distances for reasons of breeding and feeding (Saulnier, 2014). Between 1994 and 1995, studies on
the reproductive biology of tuna in the Mozambique Channel
ÍNDICE
91
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
carried out in Madagascar confirm that egg lying took place
in Malagasy waters during the second quarter (Rajoharison,
1994.1995; Conand and Richards, 1995).
According to the IRD (2003), reproduction of albacore, mainly
takes place from November to February, in an area between
17 and 28 ° S in the south of the equator.
Their spatial and temporal distribution is particularly linked
to seasonal variation of weather (upwelling, thermal front),
which defines primary production and therefore the amount of
available prey (Tewkai et al., 2009). Besides, Saulnier (2014)
argues that in the Indian Ocean, the spatio-temporal distribution of tuna’s catches is the result of a double phenomenon: first, the actual distribution of tuna bank that aggregate
around FADs, and second, the behavior of fishermen, whose
activity reflects more or less to local abundance. He also emphasized that the seiners fishing activity is marked by a strong
seasonality in the Indian Ocean, which is characterized by a
shift in northern Mozambique Channel from March to June
(Saulnier, 2014). Indeed from March to May, the Mozambique
Channel is rich in floating debris from land (tree trunks, coconut branches): a large number of catches is then conducted
with natural floating matters.
ÍNDICE
92
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
Piton and Magnier (1975) explained the reason for tuna fishermen operating in the Indian Ocean. They highlighted the
potentially productive nature of the northwest coast of Madagascar, due to terrigenous nutrient inputs and anticyclonic circulation (convergence and concentration of nutrients), however, the weakness of the currents limit the productivity.
This natural variability is added by the behaviour of tunas in
front of eddies. Each year three main eddies usually occur in
the north and the center (diameter 50 to 300 km), which can
last from one week to several months. Alternately cyclonic and
anticyclonic, succeed in the Mozambique Channel (Schouten
et al., 2003). According Marsac and Tewkai (2010), direct
catches of tuna are obtained either on the periphery or in the
heart of eddies, where phytoplankton production is important.
They argued that tuna use eddies to feed themselves.
Distribution of species
Katsuwonus pelamis, Thunnus albacares, Thunnus obesis
are mainly captured in the northwest and Thunnus alalunga
are caught more in the Central East part of ZEE.
This distribution is due to the variability of environmental parameters. The main parameter, which determines the distribution of the different species of tuna in the Malagasy EEZ,
ÍNDICE
93
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
is the temperature distribution. Temperature range required
for each species are not the same. Albacore need colder waters than yellowfin and skipjack (Crosniere and Fourmanoire,
1961). The latter explains the dominance of yellowfin, Bigeye
and skipjack tuna in the Mozambique channel while albacore
clearly predominates in the East-Centre.
The temperature in the Northwest part of Malagasy EEZ has
a monthly average of about 28 °C, which is warmer compared
to the Central East part, with a monthly average of 26 °C.
Indeed, as various authors have described (Blackburn, 1965;
Evans et al., 1981; Sund et al., 1981; Stretta, 1991), maximum abundance of Thunnus albacares is located in an area
where the temperature varies between 20 and 30 °C, then
between 20 and 29 °C for Katsuwonus pelamis. They added
that for Thunnus obesis, their maximum abundance depends
on the fishing gear used. For their part, Stretta and Slepoukha
(1986) also noted that in a tropical water, Thunnus albacares
and Katsuwonus pelamis are captured mainly in places where
the temperature ranges from 22 ° C to 29 ° C. This was later confirmed by Fonteneau (1997) saying that in the Indian
Ocean, catches are maximum with an average temperature
of 28 °C for Thunnus albacares, 27 °C for Katsuwonus pelamis and Thunnus obesis, and 18 °C for albacore. These sea
ÍNDICE
94
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
surface temperature ranges could be found in Madagascar’s
EEZ.
Finally, according Bonhommeau and Fromentin (2011), albacore do not approach the coast and prefer deep and open waters. The lack of oxygen and warm temperatures do not suit
them (IRD, 2003). Along the linear east coast of Madagascar,
there is the permanent passage of South Equatorial Current,
with a maximum flow during the monsoon Northeast (STRETA et al., 2006). This current has all the necessary characteristics to influence the distribution of albacore in the east coast
of Madagascar.
Madagascar has many assets on the tuna activities carried
in its EEZ. This study highlighted the potentially productive
zones that may contribute to the optimal management of the
resources. These areas are already well known and are widely used by fishermen.
The distribution of tuna species in Madagascar’s EEZ varies
in time and space depending on environmental parameters.
The results from modeling confirm that the temperature distribution and the distribution of chlorophyll content are the two
most important parameters which determine the distribution
of these resources as well as the variation of capture within
the EEZ.
ÍNDICE
95
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
Fisheries Development
From this study, further development of the large-scale tuna
fishery can be considered as mentionned by the Indian Ocean
Fishery Commission (1985). As the tuna fishery is not primarily a one-targeted species, besides, other species can be targeted among the various sashimi-quality fish, primarily yellowfin, bigeye, and southern bluefin tunas and billfishes (Wesley,
1991). It will also be expected that, with the great mobility of
the present fleets, future catches of these tuna species within
the Madagascar EEZ will be depending to resource availability as well as species-specific market demand. As the results
of the model used for this study show that exploitable resources can be found in new areas within the EEZ, new fleet may
relocate to these areas, but future trends in catches of these
species will depend on their relative abundance, the evaluation of which is not part of this study.
Fisheries Management
It is clear that the need for management of Indian Ocean tuna
fisheries is increasingly discussed in area fishery management forums (Wesley, 1991). In the near future, the continued
expansion of both small-scale and large-scale tuna fisheries
both inside and outside the EEZ could reduce catches. Con-
ÍNDICE
96
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
flicts between tradional and indudtrial fishery were recently
noticed in the north-west fishing area, especially for shrimp
fishery. Traditional fishermen often accused industrial fleet to
expand their fishing area to areas adjacent to that used by
the small-scale fisheries, and ultimately lead to decreased
catches in smallscale fisheries as well as the overfishing of
the exploited stocks.Tuna fishery managers need the relevant
results to address scientifically such issue. Though such conflicts does not occur in tuna fisheries, current research findings could be used to prevent both resource conflicts between
small and large-scale of tuna fisheries and the risk of overfishing as well.
The license sales were therefore chosen not to have to suffer in terms of the economy. However, the sector remains almost unchecked: catch statistics are difficult to verify, board
observer proves to be an almost impossible operation. Finally, we simply accept unilateral declarations from ship-owners.
For this it will be necessary to improve the quantity and quality
of data collected during fishing operations. Socio-economists
as fisheries scientists must find a balance between ship owners and the Malagasy State to establish a fair sharing of rents.
ÍNDICE
97
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
References cited
ANONYME. (2003). Etude du Comportement des Thonidés par
l’Acoustique et la Pêche : Synthèse des résultats ECOTAP.IRD,
28p.
BERGES, J-C., CAYRE, P., CITEAU,J.,DEMARCQ,H.,DUPOUY,C.,
GUILLOT, B.,GOHIN, F., LAURS, M., LE BORGNE, P.,LEROY, C.,
LIORZOU, B., MARSAC, F., PETIT, M., PIANET, R., STRETTA,J-M.
(1989).Télédétection satellitaire et pêcherie thonière océanique.
FAO LIBRARY AN: 289025-061, Document technique sur les pêches n°302,160p.
BLACKBURN, M. (1965). Oceanography and the ecology of tunas.
In: Oceanography arid Marine Biology. Annual Revue n° 3, pp.299322.
BONHOMMEAU, S., et Fromentin, J. (2011). Les populations
ichtyologiques de grands pélagiques. SRM GDG, Doc IFREMER,
9p.
CONAND, F et RICHARDS.J.W. (1995). Distribution of Tuna Larvae
between Madagascar and the Equator, Indian Ocean. ORSTOM.
Biological Oceanography. Volume 1, Number 4, pp.321-336.
CROSNIER.A et FOURMANOIR.P. (1961).Pêche au thon à Madagascar. Extrait du bulletin Madagascar n°185,3p.
DUFOUR, P., et STRETTA, J.M. (1973). Fronts thermiques et thermohalins dans la région du Cap Lopez (Golfe de Guinée) en juin-juillet
1972: phytoplancton, Zooplancton, Micronecton et pêche thonière.
ÍNDICE
98
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
Centre de Recherche océanographique Abidjan. Document Scientifique, Vol IV (3), pp. 99-142.
EVANS, R. H., MACLAIN, D. R., et BAUER, R. A. (1981). Atlantic skipjack tuna: influences of the environment on their vulnerability to surface gear. Documents Scientifiques ,ICCAT IX, pp.264-274.
FONTENEAU, A. (1997). Atlas des pêcheries thonières tropicales.
Captures mondiales et environnement. Institut français de recherche scientifique pour le développement en coopération ,197p.
IANELLI, J.N. (1995). Studies on the population structure of skipjack
tuna, Katsuwonus pelamis, in the central and eastern Pacifi Ocean:
Signs of interaction potential using environmental data. FAO, Status of Interactions of Pacific Tuna Fisheris in 1995.
IOTC. (2015). Compendium of Active Conservation and Management
Measures for the Indian Ocean Tuna Commission. CTOI-FAO Report, p.188.
MARSAC, F ., et TEWKAI.E (2010). Tourbillons méso-échelle et top
prédateurs dans le canal de Mozambique. In : Information spatiale
pour l’environnement et les territoires, pp. 44-44.
MARSAC, F. (1995). Analysis of small-scale movements of yellowfin
tuna around Fish-Aggregating Devices (FADs) using sonic tags In:
Proceedings; IPTP collective volume no. 9.
MARSAC, F. (1991). The recent drop in the yellowfin catches by the
Western Indian Ocean purse seine fishery: overfishing or oceano-
ÍNDICE
99
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
graphic changes? In: FAO, Colombo (Sri Lanka). Indo-Pacific Tuna
Development and Management Programme , 1991, p. 66-83.
MARSAC, F. (1989). Pêcheries de thons tropicaux de l’océan Indien
occidental. Antenne ORSTOM. Victoria-Mahé Seychelles. FAO LIBRARY AN : 289057, pp. 111-125.
MARSAC, F. (1988). Some considerations on the yellowfin tuna stock
status. In: FAO, Colombo (Sri Lanka). Indo-Pacific Tuna Development and Management Programme , 1988, p. 40-49.
MARSAC, F. (1987)-b. A method to assess the set time of the purse
seiners in the Indian Ocean. In: FAO, Colombo (Sri Lanka). Indo-Pacific Tuna Development and Management Programme ,
1987, p. 155-161.
MARSAC, F. (1987)-a. Preliminary yield per recruit analysis of the Indian Ocean yellowfin and bigeye fisheries In: FAO, Colombo (Sri
Lanka). Indo-Pacific Tuna Development and Management Programme , 1987, p. 58-72.
MARSAC, F. (1986). La peche de surface des thonides tropicaux dans
l’ocean indien [Tropical tuna: surface fisheries in the Indian Ocean].
(French) In: FAO Fisheries Technical Paper (FAO), no. 282 / Rome
(Italy), FAO , 1986 , 24 p.
MARSAC, F. (1985). Preliminary study of the growth of yellowfin
(Thunnus albacares) estimated from purse seine data in the western Indian Ocean. In: FAO, Colombo (Sri Lanka). Indo-Pacific Tuna
Development and Management Programme , 1985, p. 84-90.
ÍNDICE
100
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
NISHIDA, T. (1995). Influence of purse seine fishery on longline fishery for yellowfin tuna (Thunnus albacares) in the western Indian
Ocean. FAO, Status of Interactions of Pacific Tuna Fisheris in 1995.
PHILLIPS, S. J., R.P. ANDERSON, et SCHAPIER, R.E. (2006). Maximum Entropy Modeling of Species Geographic Distributions. Ecological Modeling 190, pp.231-259.
PYTON, B et MAGNIER, Y. (1975). Remarque sur la circulation et les
caractéristiques des eaux malgache de la couche superficielle entre Madagascar et l’équateur.Cah.ORSTOM.Sér.Océanogr.XIII (2),
pp.117-132.
RAJOHARISON, H. (1994). Note sur les indices gonado- somatiques
et la fécondité des Albacores (Thunnus albacares) échantillonnés
à Antsiranana en 1993 - Document Scientifique. AT/COI/PTRZ 14.
11 p.
RAJOHARISON, H., CONAND, F. (1995). Étude de la reproduction de
l’albacore dans le canal du Mozambique. Document Scientifique.
AT/COI/PTRZ 20 .11 p.
RALISON, E., et MINTEN, B. (2003). Accès aux ressources halieutiques et place de la pêche dans l’économie rurale. In : Revue du
secteur agricole et de l’environnement, Banque mondiale, pp.6465.
RAMANANTSOA, H. J. D. (2013). Utilisation des données satellitaires
d’environnement pour la surveillance de pêche de Madagascar :
Télédétection et Risque Naturel. Diplôme De MASTER2, Institut
ÍNDICE
101
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
Observatoire Géophysique d’Antananarivo, Université de la Réunion, Université d’Antananarivo, 43p.
RANDRIAMBOLA, T. (2012).National Pilot Projet. AMESD-MOI/TAFRIRPRX, 20p.
SAULNIER, E. (2014). Dynamique spatio-temporelle de l’effort de
pêche sur DCP des thoniers senneurs français dans l’océan indien.
Diplôme d’Ingénieur de l’Institut Supérieur des Sciences Agronomiques, Agroalimentaires, Horticoles et du Paysage, Agrocampus
Ouest, CFR de RENNES, 55p.
SCHOUTEN, M. W., RIDDERINKHOF, H., VAN LEEUWEN, P. J.
(2003). Eddies and variability in the Mozambique Channel. DeepSea Research volume 5, 90p.
STRETTA, J-M., et SLEPOUKHA, M. (1986). Analyse des facteurs biotiques et abiotiques associés aux bancs de Listao. Proceedings
of the International Commission for Conservation of Atlantic Tuna
(ICCAT-Madrid Spain), Conference on the International Skipjack
Program held in Canarias Spain on 21-29 June 1983, pp.161-169.
STRETTA, J.M; GUYOMARD, D.; PETIT, M ; DESRUISSEAUX, M;
GARDEL, L. (2006). Hydroclimat du sud-ouest de l’océan Indien et
océanographie spatiale, pp.39-63.
STRETTA, J-M. (1977). Température de surface et pêche thonière
dans la zone frontale du cap Lopez en juin et juillet 1972. 1974 et
1975. ORSTOM, Service Océanographie Vol XV(2), pp.163-180.
ÍNDICE
102
Analysis of environmental parameters effects on the spatial
and temporal dynamics of tropical tuna in the EEZ of
Madagascar: coupling remote sensing and catch data
STRETTA, J-M. (1991). Forecasting models for tuna fishery with aerospatial remote sensing. Remote sensing vol12, n°4, pp.771-779.
STRETTA, J-M., NOËL, J., et LE GUEN, J.C (1973). Mesures de
température de surface par radiométrie aérienne et concentrations
de thons au large d’Abidjan en août 1973. Document Multigr, CRO
Abidjan, 16 p.
SUND, P.N., BLACKBURN, M. et WILLIAMS, F. (1981). Tunas and
their environment in the Pacific Ocean. Annual Revue n° 19, pp.
443-512.
TEWKAI, E., ROSSI, V., SUDRE, J., WEIMERSKIRCH, H., LOPEZ,
C., HERNANDEZ, G.E., MARSAC, F., GARÇON, V. (2009). Top
marine predators track Lagrangian coherent structures. Proceedings of the National Academy of Sciences 106 (20), pp. 8245-8250.
ÍNDICE
103
Marcellin Roandrianasolo Tsihoboto, Bemiasa John &
Fanazava Rijasoa
Notas
1. Url1 : http://oceancolor.gsfc.nasa.gov/
2. Url2 : http://oceancolor.gsfc.nasa.gov/cgi/l3
3. Url3 : https://mgel.env.duke.edu/mget/download/
4. Url4 : http://www.oracle.ugent.be/download.html
ÍNDICE
104
DOI: 10.14198/MDTRRA2015.ESP.06
Petroleum production in symbiosis with
fisheries? The norwegian experience
Torleiv Bilstad1, Bjørnung Jensen2,
Martin Toft2 and Evgenia Protasova1
Environmental Engineering, University of Stavanger, 4036, Norway
Halliburton, Baroid Surface Solutions, Eldfiskveien 1, 4056 Norway
[email protected]
[email protected]
[email protected]
[email protected]
1
2
Abstract
Fisheries and offshore Oil and Gas (O&G) industries have a
long history of co-existence. Both industries leave an impact
on the marine environment, and are subject to regulations in
order to ensure sustainable use of resources. Offshore O&G
exploration, drilling and production activities may impact fisheries through seismic activities, discharge of hazardous waste
and presence of physical structures.
ÍNDICE
105
Torleiv Bilstad, Bjørnung Jensen, Martin Toft
& Evgenia Protasova
Historically, cuttings from drilling sub-surface wells have been
deposited directly from the platform to the seabed. However,
environmental laws and regulations for the Norwegian offshore sector prohibit such practice when the oil on cutting
exceeds 1% by weight. Re-injection of cuttings as a slurry
into subsurface formations is still practiced. Due to migration,
leaks, re-entering of slurry onto the seabed, and collapsing
formations this disposal method is on a decline. Transport of
oily cuttings to shore for final treatment is the preferred Norwegian practice. However, cutting treatment on platforms is
also continuously evaluated. For logistics and cost reasons,
as well as health, safety and environmental (HSE) and working environment reasons, emphasis is put on offshore waste
minimization, reuse and recycle.
Keywords: drilling cuttings, oil based mud, produced water,
best available technologies (BAT)
Résumé
Les pêches et les industries Pétrolières et Gazières (P&G)
offshore ont une longue histoire de coexistence. Les deux
industries laissent un impact sur le milieu marin et sont soumises à des règlements afin de garantir une utilisation durable des ressources. Les activités d’exploration offshore,
ÍNDICE
106
Petroleum production in symbiosis with fisheries?
The norwegian experience
forage et production de P&G peuvent affecter les pêches à
travers des activités sismiques, le déversement de déchets
dangereux et la présence de structures physiques.
Historiquement, les déblais provenant de puits de forage sous
la surface ont été déposés directement à partir de la plateforme au fond marin. Cependant, les lois et règlements environnementaux pour le secteur offshore norvégien interdisent
une telle pratique lorsque l’huile de la coupe dépasse 1% en
poids. La réinjection de déblais sous forme de boue dans
des formations souterraines est encore pratiquée. À cause
de la migration, les fuites, la boue rentrant sur le fond marin
et l’effondrement des formations, cette méthode d’élimination
est sur le déclin. Le transport des déblais huileux à terre pour
le traitement final c’est la pratique que privilégient les norvégiens. Toutefois, le traitement des déblais sur les plateformes
est également évalué en permanence. Pour des raisons de
logistique et de coût, ainsi que pour des raisons de santé,
de sécurité et d’environnement (HSE) et de milieu de travail,
l’accent est mis sur la réduction des déchets en mer, la réutilisation et le recyclage.
Mots clés : déblais de forage, huile à base de boue, eau produite, meilleures techniques disponibles (MTD)
ÍNDICE
107
Torleiv Bilstad, Bjørnung Jensen, Martin Toft
& Evgenia Protasova
Introduction
O
n the Norwegian Continental Shelf co-existence of
offshore O&G with fisheries and aqua culture is supported by strict regulations and zero discharge from
O&G activities.
Types and amount of fluids utilized when drilling a well determine to which extent the drilled cuttings are legally considered
hazardous waste. The main categories of drilling fluids are oil
based (OBM), water based (WBM) and synthetic based mud
(SBM). The purpose of adding fluids to the drilling operations
is to cool and lubricate the drill bit, to stabilize the well bore, to
control subsurface pressure, to control formation pressure, to
control well stability, to control corrosion, and to carry cuttings
to the surface.
Drill cuttings
Drill cutting particle size varies between 10 µm and 20 mm
depending on the drill bit, well bore length and geological formations. Depending on the quality of OBM, the geological formations and whether drilling is in hydrocarbon reservoirs, cuttings are coated with different hydrocarbons including PAHs,
PCBs, and heavy metals. Re-injection of cuttings as a slurry
into subsurface formations has over the last few years been
ÍNDICE
108
based (OBM), water based (WBM) and synthetic based mud (SBM). The purpose of adding
Petroleum production in symbiosis with fisheries?
fluids to the drilling operations is to cool and lubricate the drill bit, to stabilize the well bore,
The norwegian
experience
to control subsurface pressure,
to control formation
pressure, to control well stability, to
control corrosion, and to carry cuttings to the surface.
challenged due to several cases of loss of formation integrity,
leading to migration of oil and water, leaks, cuttings re-enDrill cutting particle size varies between 10 µm and 20 mm depending on the drill bit, well
tering the sea bed and collapsing formations. Such mishaps
bore length and geological formations. Depending on the quality of OBM, the geological
formations
and whether into
drillingincreased
is in hydrocarbon
reservoirs,
cuttings design
are coatedand
with
have developed
focus
on proper
different hydrocarbons including PAHs, PCBs, and heavy metals. Re-injection of cuttings as a
maintenance
injection
The
re-injection
is,
slurry
into subsurfaceofformations
has wells.
over the last
fewmethod
years been of
challenged
due to several
cases of loss of formation integrity, leading to migration of oil and water, leaks, cuttings rehowever,
used
(Figure
1).mishaps have developed into increased
entering
the seastill
bed widely
and collapsing
formations.
Such
DRILL CUTTINGS
focus on proper design and maintenance of injection wells. The method of re-injection is,
however, still widely used (Figure 1).
70.000
60.000
50.000
Tonns 40.000
30.000
20.000
10.000
0
2004
2005
2006
2007
2008
2009
2010
2011
2012
Year
Figure
1. Oil
Drilled Cuttings
in Norwegian
(Norsk Olje ogSector
Gass, 2013)
Figure
1.Based
Oil Based
DrilledInjection
Cuttings
InjectionSector
in Norwegian
Oljefriendly
og Gass,
2013)classified as green and yellow
WBM normally consists of (Norsk
environmental
chemicals,
with regard to environmental toxicity, which allows for direct discharge to sea. However, in
environmental sensitive areas such as the Barents Sea, also WBM discharges are in many
areas prohibited or subject to governmental approval and possible discharge permit. The
ÍNDICE
109
2
Torleiv Bilstad, Bjørnung Jensen, Martin Toft
& Evgenia Protasova
WBM normally consists of environmental friendly chemicals,
classified as green and yellow with regard to environmental
toxicity, which allows for direct discharge to sea. However, in
environmental sensitive areas such as the Barents Sea, also
WBM discharges are in many areas prohibited or subject to
governmental approval and possible discharge permit. The
Barents Sea is a “0-discharge area” and a permit is always
required, also for sub-surface injection. Figure 2 shows the
Barents of
Seausing
is a “0-discharge
area”
and a permit is always required, also for sub-surface
trend
WBM in
Norway.
injection. Figure 2 shows the trend of using WBM in Norway.
250.000
Tonns
200.000
150.000
100.000
50.000
0
2004
2005
2006
2007
2008
2009
2010
2011
2012
Year
Figure
2. Water
BasedCuttings
Drilled
Cuttings
Disposed
Offshore
Olje og Norway
Gass, 2013)
Figure
2. Water
Based Drilled
Disposed
Offshore
Norway (Norsk
(Norsk Olje og Gass, 2013)
Treatment of OBM drilled cuttings is initiated offshore by a shale shaker consisting of
vibrating screens. Further solids control could include gravitational sand settling, a specialized
ÍNDICE
110
desander and deciliter as well as centrifuges,
all successively removing smaller solids from
the mud. The shale shaker is the universal common separation technique for separating fluids
from cuttings. Each well typically produces 300 – 1800 tons from the shaker, with 5 – 15 %
by volume oil.
Petroleum production in symbiosis with fisheries?
The norwegian experience
Treatment of OBM drilled cuttings is initiated offshore by a
shale shaker consisting of vibrating screens. Further solids
control could include gravitational sand settling, a specialized
desander and deciliter as well as centrifuges, all successively removing smaller solids from the mud. The shale shaker
is the universal common separation technique for separating
fluids from cuttings. Each well typically produces 300-1800
tons from the shaker, with 5-15 % by volume oil.
Depending on local regulations and oil content on cuttings,
available disposal options include discharge to sea, underground injection, and further offshore and onshore treatment.
In Norway permits are required for all discharges as well as
sub-surface injection. Figure 3 summarizes years of accumulated drilled cuttings mass production from the Norwegian
offshore petroleum sector. Treatment of offshore generated
drilled cuttings is a challenge compared with cuttings generated onshore. After shaker separation of mud and cuttings,
the transport routes for the two components include internal
transport on the rig itself, from the rig to vessel, further transport by vessel to onshore receiving facilities, and on to treatment facilities and possible reuse or final disposal. This is a
cost issue of great concern; logistics and transportation of offshore drilled cuttings.
ÍNDICE
111
Torleiv Bilstad, Bjørnung Jensen, Martin Toft
& Evgenia Protasova
350.000
Oil Emulsion
Drilling mud & cuttings
Tonns
300.000
250.000
200.000
150.000
100.000
50.000
0
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
Year
FigureFigure
3. Oil Based
Cuttings,
mud
and oil emulsions
transported
to shore from
3. OilDrilled
Based
Drilled
Cuttings,
mud and
oil emulsions
Norwegian Offshore Sector (Norsk Olje og Gass, 2013)
transported to shore from Norwegian Offshore Sector (Norsk Olje og
Gass, 2013)
After the oily cuttings have been through a Thermomechanical Cuttings Cleaner (TCC) unit
shown in Figure 4, the recovered drill fluid is compared to virgin drill fluid in Figure 5.
After the oily cuttings have been through a Thermomechanical Cuttings Cleaner (TCC) unit shown in Figure 4, the recovered drill fluid is compared to virgin drill fluid in Figure 5.
ÍNDICE
112
Figure 4. The Principal of the Thermomechanical Cuttings Process Mill (Halliburton, 2007)
Year
Figure 3. Oil Based Drilled Cuttings, mud and oil emulsions transported to shore from
(Norsk Olje og Gass,
2013)
Norwegian
Offshore Sector
Petroleum
production
in symbiosis
with fisheries?
The norwegian experience
After the oily cuttings have been through a Thermomechanical Cuttings Cleaner (TCC) unit
shown in Figure 4, the recovered drill fluid is compared to virgin drill fluid in Figure 5.
Figure 4. The Principal of the Thermomechanical Cuttings Process
Mill (Halliburton,
2007)
Figure 4. The Principal of the Thermomechanical
Cuttings
Process Mill (Halliburton, 2007)
4
Figure 5. Comparing virgin drill fluid with TCC treated fluid recovered for reuse
Figure 5. Comparing virgin drill
fluid 2013)
with TCC treated fluid recovered
(MI Swaco,
for reuse (MI Swaco, 2013)
The process mill is the heart of the TCC separation process and converts kinetic energy to
thermal energy by creating friction in the cuttings. Solids are recovered through an auger
ÍNDICE
system,
discharged through a cell valve as dry113
powder and on to rehydration, with recovery of
water prior to disposal. Oil and water flash off as vapors, and are condensed and separated in
a condenser skid. The water and crushed cuttings are cleaned to levels below Norwegian
requirements for sea discharge, 30 mg/L oil in water and 1 % oil by weight on cuttings.
Torleiv Bilstad, Bjørnung Jensen, Martin Toft
& Evgenia Protasova
The process mill is the heart of the TCC separation process
and converts kinetic energy to thermal energy by creating friction in the cuttings. Solids are recovered through an auger
system, discharged through a cell valve as dry powder and
on to rehydration, with recovery of water prior to disposal. Oil
and water flash off as vapors, and are condensed and separated in a condenser skid. The water and crushed cuttings are
cleaned to levels below Norwegian requirements for sea discharge, 30 mg/L oil in water and 1 % oil by weight on cuttings.
Produced water
Produced water is defined as a byproduct from oil and gas exploration and production. Water brought to the surface co-produced with oil and gas may include water originally in the reservoir, water injected into hydrocarbon formations, metals and
varying amount of chemicals added during drilling, production
and treatment processes (Aquatec, 2013). Due to presence
of numerous hazardous components, produced water should
be treated prior to discharge. Additionally, treated produced
water should be tested for toxicity to marine ecosystems. Salinity of produced water varies from 100 mg/L to 400 000 mg/L
(saturated brine), compared to 35 000 mg/L salinity in normal
seawater (PWS, 2010).
ÍNDICE
114
Petroleum production in symbiosis with fisheries?
The norwegian experience
Key parameters of produced water are according to Statoil
(2014):
–– Oil concentration of 100 - 500 ppm for oil field and 10-200
ppm for gas field
–– Salinity of 1 - 40 %
–– Oil droplet sizes of 2 - 20 microns
–– Viscosity of 0.2 - 2 cP
–– Density of 990 - 1050 kg/m3
–– Pressure of 10 to 80 bar
–– Temperature of 30 to 150 oC.
According to Walsh (2014) components in PW is summarized
as:
––
––
––
––
––
––
––
––
Dispersed oil
Dissolved oil (HC, BTX, phenols, PAH, etc)
Dissolved organic acids (SCFA, naphthenic acids)
Dissolved formation minerals (NaCl, CaCO3, FeCO3, FeSx,
BaSO4, etc)
Dissolved metals (Fe, Zn, Mn, Cr, etc)
Process & Production chemicals (Cl, MeOH, glycols, LDHI)
Produced formation solids (clay, sand, carbonate)
Precipitated mineral solids (CaCO3, FeCO3, FeSx, BaSO4,
etc)
ÍNDICE
115
Torleiv Bilstad, Bjørnung Jensen, Martin Toft
& Evgenia Protasova
–– Dissolved and precipitated corrosion products (metal oxides)
–– Dissolved gasses (O2, H2S, CO2)
–– Combinations of the above; i.e., Schmoo
–– Various bacteria and by-products (SRB, GHB)
There is a distinct difference between produced water from oil
and gas production as presented in Table 1.
The differences in produced water quality and composition
from oil and gas fields play an important role in design of produced water treatment process. One of these important parameters is water/HC ratio; from 0.05 in gas fields up to 0.9 in
oil fields. These values directly affect the choise of treatment
processes.
The composition and characteristics of produced water are
strongly dependent on the origin of the water, oil quality and
upstream processing. Produced water contains dissolved
gasses, dissolved minerals, dissolved organics including hydrocarbons, suspended oil or oil droplets, sand and drilled
cuttings as well as various production chemicals. The amount
and composition of produced water can vary a great deal from
one field to the other and during the lifetime of a field (Statoil,
ÍNDICE
116
Petroleum production in symbiosis with fisheries?
The norwegian experience
2014). Table 2 presents produced water compositions from
different fields on the Norwegian Continental Shelf.
Produced water discharge
Discharge of produced water is regulated by law. Treatment
based on regulations needs to be implemented for both
sub-surface reinjection and water directly disposed of to the
marine environment. Figure 6 shows produced water from
offshore Norway. Discharges of produced water on the Norwegian Continental Shelf reached a peak in 2010 with a volume of 190 million m3. Production of produced water from the
Norwegian Continental Shelf is predicted to decrease significantly from 2016. Minimizing produced water close to the production source is a priority. Practical use of produced water is
reinjection into producing wells for pressure maintenance and
enhanced oil recovery (EOR). This requires proper treatment
before injection. Another disposal strategy is disposal of untreated produced water into aquifers.
Data in Table 3 compare injected produced water in the US.
Texas is the leading state in terms of both injections for disposal and for enhanced oil recovery purposes.
ÍNDICE
117
Torleiv Bilstad, Bjørnung Jensen, Martin Toft
& Evgenia Protasova
Figure 6.
Water Production
Discharge from
Continental
Shelf (Statoil, 2012)
Figure
6. Waterand
Production
and Norwegian
Discharge
from Norwegian
Continental Shelf (Statoil, 2012)
Presence of hydrocarbons in slop water is an additional separation challenge. Slop is run off
from platform deck and consists of 80 % water with added components and mixtures of oilPresence
of hydrocarbons
slopwellbore
water clean-up
is an additional
sepbased
drilling fluid,
water-based drillinginfluid,
detergents, completion
fluids, cement spacers, rig wash, brines with different salts and solids from cuttings. Slop is
aration challenge. Slop is run off from platform deck and conusually shipped onshore for treatment from the Norwegian Continental Shelf. In order to
reduce
an alternative
strategy components
may be to inject and
slop into
subsurface
sistsonshore
of 80shipping,
% water
with added
mixtures
formations or offshore slop pretreatment.
of oil-based drilling fluid, water-based drilling fluid, wellbore
By 2020, the onshore oil and gas industry will generate over 500 million barrels of produced
clean-up
detergents,
completion
fluids,
cement spacers,
rig an
water
a day – driven
by an increase
in the production
of unconventional
oil and gas and
increasing number of mature oilfields where water to oil ratios are growing significantly.
wash, brines with different salts and solids from cuttings. Slop
There will be huge opportunities for water companies offering solutions that enable
is usually
shippedcompanies
onshore
for treatment
fromassociated
the Norwegian
exploration
and production
to overcome
the challenges
with managing
thisContinental
produced water and
to
turn
it
into
a
valuable
asset
rather
than
a
waste
stream.
Shelf. In order to reduce onshore shipping, an
alternative
strategy may
LAWS
AND REGULATIONS
be to inject slop into subsurface formations or offshore slop pretreatment.
The marine ecosystem is a very sensitive and complex environment. Sustainability is often
depending on human activity. In case of environmental disasters, healing of marine
ecosystems may take tens of years, if at all healing. Such disasters often result in biological
and ecological degradation and species extinction as well as significant economic losses for
ÍNDICE
118governments have strict regulations and
people
in coastal regions. Internationally,
requirements for discharge of hazardous components. Table 4 shows limits for oil content in
water discharged to sea.
Petroleum production in symbiosis with fisheries?
The norwegian experience
By 2020, the onshore oil and gas industry will generate over
500 million barrels of produced water a day – driven by an increase in the production of unconventional oil and gas and an
increasing number of mature oilfields where water to oil ratios
are growing significantly.
There will be huge opportunities for water companies offering
solutions that enable exploration and production companies
to overcome the challenges associated with managing this
produced water and to turn it into a valuable asset rather than
a waste stream.
Laws and regulations
The marine ecosystem is a very sensitive and complex environment. Sustainability is often depending on human activity.
In case of environmental disasters, healing of marine ecosystems may take tens of years, if at all healing. Such disasters often result in biological and ecological degradation and
species extinction as well as significant economic losses for
people in coastal regions. Internationally, governments have
strict regulations and requirements for discharge of hazardous components. Table 4 shows limits for oil content in water
discharged to sea.
ÍNDICE
119
Torleiv Bilstad, Bjørnung Jensen, Martin Toft
& Evgenia Protasova
The OSPAR Commission and the Norwegian authorities set
requirements for the use of environmentally friendly chemical
additives (PLONOR, “yellow” and “green” chemicals), but exact discharge limits have only been set for the content of oil,
less than 30 mg/L (NPD, 2012).
PLONOR stands for Pose Little or No Risk. «Yellow» chemicals are chemicals in use that do include in “red or black”
restricted categories. “Green” chemicals are chemicals in the
PLONOR list of the OSPAR; permitted without specific conditions.
Figure 7 presents development of regulations for oil content
in discharged produced water with the main goal of “zero
discharge” in 2020. Intense development and usage of best
available technologies (BAT) make positive impact of achieving standards set by the authorities for safety and treatment
of produced water.
ÍNDICE
120
PLONOR stands for Pose Little or No Risk. «Yellow» chemicals are chemicals in use that do
include in “red or black” restricted categories. “Green” chemicals are chemicals in the
PLONOR list of the OSPAR; permitted without specific conditions.
Figure 7 presents development of regulations for oil content in discharged produced water
Petroleum
production
in2020.
symbiosis
with fisheries?
with the main
goal of “zero
discharge” in
Intense development
and usage of best
available technologies (BAT)
positive impact
of achieving standards set by the
Themake
norwegian
experience
authorities for safety and treatment of produced water.
7. Development
of Produced
Water
Regulations
(Statoil,
FigureFigure
7. Development
of Produced Water
Regulations
(Statoil,
2014)
2014)
BEST AVAILABLE TECHNOLOGY
Minimizing
produced water
close to the production source is a priority in development of
Best available
technology
BAT. Produced water management strategy usually includes four main steps referring to
Figure 8 (Statoil, 2014):
Minimizing produced water close to the production source is a
- water in
shut-off
(reduce production
of Produced
water in mature
fieldsmanagement
by isolating water
priority
development
of BAT.
water
producing zones);
strategy
usually includes four main steps referring to Figure 8
- reinjection;
- shallow2014):
disposal (deposition);
(Statoil,
-
produced water treatment or top side treatment.
ÍNDICE
121
8
Torleiv Bilstad, Bjørnung Jensen, Martin Toft
& Evgenia Protasova
–– water shut-off (reduce production of water in mature fields
by isolating water producing zones);
–– reinjection;
–– shallow disposal (deposition);
–– produced water treatment or top side treatment.
Figure 8. Produced Water Management Strategy (Statoil, 2014)
Figure 8. Produced Water Management Strategy (Statoil, 2014)
Reinjection
is more
usually
top However,
side water
treatReinjection
is usually
costly more
than top costly
side waterthan
treatment.
reinjection
could
also be used for pressure maintenance and enhanced oil recovery. Top side treatment and
ment. However, reinjection could also be used for pressure
reinjecting both require proper treatment of produced water. Reinjection and shallow disposal
options
will depend onand
production
well properties
and specific discharge
permissions
in order
maintenance
enhanced
oil recovery.
Top side
treatment
to design produced water treatment for minimum discharge requirements (Statoil, 2014).
Norwegian guidelines for produced water treatment systems include, but are not limited to,
two treatment stages to fulfill the World Bank Standard discharge limits, and three treatment
ÍNDICE
122This should also apply for treatment of water
stages
to fulfill stricter discharge requirements.
nd
rd
from 2 stage separator/3 stage separator/coalescer. In treatment systems with two treatment
stages, the stages shall be based on different separation principles. A treatment stage is per
Petroleum production in symbiosis with fisheries?
The norwegian experience
and reinjecting both require proper treatment of produced water. Reinjection and shallow disposal options will depend on
production well properties and specific discharge permissions
in order to design produced water treatment for minimum discharge requirements (Statoil, 2014).
Norwegian guidelines for produced water treatment systems
include, but are not limited to, two treatment stages to fulfill
the World Bank Standard discharge limits, and three treatment stages to fulfill stricter discharge requirements. This
should also apply for treatment of water from 2nd stage separator/3rd stage separator/coalescer. In treatment systems
with two treatment stages, the stages shall be based on different separation principles. A treatment stage is per definition
a separate physical oil removal stage (Statoil, 2014).
Table 5 presents comparison of BAT for produced and slop
water treatment, showing key parameters and conditions for
successful implementation of each.
Conclusions
Sustainable management of the petroleum industry and its
co-existence with the fishing sector may be achieved by developing and implementing BAT. Available technologies and
strategies are sufficient for solving the drilling waste and pro-
ÍNDICE
123
Torleiv Bilstad, Bjørnung Jensen, Martin Toft
& Evgenia Protasova
duced water challenges. The choice of solution is depending on composition, location, distance to shore and laws and
regulations. BAT provides acceptable results for O&G waste
treatment with respect to marine environmental conditions
and laws and regulations. Enforcing laws and regulations
is the key to sustainable coexistence between fisheries and
O&G industries.
References
Aquatec. 2013. Produced Water Treatment and Beneficial Use Information Center [Online]. Available at: <http://aqwatec.mines.edu/
produced_water/intro/pw/> [Accessed 23.03.14].
EIA, US Energy Information Administration. 2014. Global Petroleum
and Other Liquids [Online]. Available at: <http://www.eia.gov/forecasts/steo/report/global_oil.cfm> [Accessed 20.02.2014].
Halliburton. 2007. Baroid Surface Solutions. Thermal Desorption
Technology. [Online]. Available at: <http://www.halliburton.com/
public/bar/contents/data_sheets/web/sales_data_sheets/sds059.pdf> [Accessed 20.02.2014].
MI Swaco. (2013). Base Oil GC/MS scan. Example from Bautino. Kazakhstan. Word–file.
NPR, Norwegian Petroleum Directorate. 2012. Discharge of Produced
Water [Online]. Available at: <http://www.npd.no/en/Publications/
Reports/Long-term-effects-of-discharges-to-sea-from-petro-
ÍNDICE
124
Petroleum production in symbiosis with fisheries?
The norwegian experience
leum-activities/The-Oceans-and-Coastal-Areas/2-Dischargesof-produced-water/> [Accessed 23.03.2014].
Norske olje og gass. 2013. Environmental Report. Oil and Gas Industry. [Online]. Available at: <https://www.norskoljeoggass.
no/Global/2013%20Dokumenter/Publikasjoner/Environmental%20Report%202013.pdf> [Accessed 20.03.2014]
PWS, Produced Water Society. 2010. Produced Water Facts [Online].
Available at: <http://producedwatersociety.com/index.php/produced_water_facts/> [Accessed 23.03.2014].
SPE, The Society of Petroleum Engineers. 2009. Produced Water Management [Online]. Available at: <http://www.spe.org/dl/
docs/2009/Veil.pdf> [Accessed 01.04.2014].
Statoil. 2012. Presentation by Knut Åsnes at MinNovation Seminar at
the University of Stavanger, Norway, April 26.
Statoil. 2013. Water Production and Related Challenges [Online]. Available at: <http://www.ipt.ntnu.no/~jsg/undervisning/prosessering/gjester/LysarkRamstad2013.pdf> [Accessed 26.03.2014].
Statoil. 2014, Presentation by Anne Finborud at Separation Technology seminar at the University of Stavanger, Norway, February 27.
Veolia Water. 2013. Application of MPPE for Treating Produced Water
Toxins [Online]. Available at: http://www.tuvnel.com/assets/content_images/2_3%20VWS%20MPP%20Systems.pdf [Accessed
01.04.14].
ÍNDICE
125
Torleiv Bilstad, Bjørnung Jensen, Martin Toft
& Evgenia Protasova
Walsh, J. 2014. European Desalination Society, Two Day Course on
“Water Treatment for Upstream Oil and Gas”, May 10-11 Grand
Resort Hotel, Limassol, Cypros.
Appendix
Table 1. Parameters of Oil Field vs. Gas Condensate Field
(Statoil, 2014)
Specification
Gas condensate field
Oil field
Gas/Liquid ratio (GLR)
High
Low to medium
Water/Oil ratio (WOR)
Low (< 0.05)
Low to high (0-0.9)
Quantity of water
Low (< 50 m /h,
condensed water only)
Medium to high (502000 m3/h)
Salinity of water phase
No salt
Medium to high (> 3
%)
Foam stability
Low
Low to high
Foaming problems
Seldom experienced
Often experienced, oil
specific
Water in oil stability
Low
Medium to high
Emulsion problems
Seldom experienced
Often experienced, oil
specific
Oil in water stability
High
Low to high
Produced water treatment
Very difficult
Easy to difficult, oil
specific
ÍNDICE
3
126
Petroleum production in symbiosis with fisheries?
The norwegian experience
Table 2. Produced Water Compositions from Norwegian Continental
Shelf (Statoil, 2013)
Ion (mg/L)
Na+
K
+
Ormen
lange*
Oseberg
Njord
Gyda
Utsira
aquifer**
Seawater
4428
12500
19000
65340
10100
11150
90
335
747
5640
262
420
Ca
220
978
4050
30185
494
435
Mg2+
31
135
392
2325
714
1410
Ba2+
19
134
765
485
6.7
0.1
Sr2+
12
157
891
1085
12.1
6.6
Fe
0.6
0.1
23
-
5.7
0
Cl
-
6804
21900
41400
167400
18500
20310
SO42-
7.9
5
15
-
2
2800
HCP3
1008
633
230
76
1110
150
Organic
acids
640
120
360
-
-
-
Salinity
(TDS)
12650
36800
67513
272536
30100
36675
2+
-
* O
rmen lange – gas field, Oseberg – oil and gas; Njord – oil and
gas; Gyda – oil field.
** Utsira Aquifer is saline aquifer CO2 storage in Norwegian part of
North Sea from Sleipner E and W.
ÍNDICE
127
Torleiv Bilstad, Bjørnung Jensen, Martin Toft
& Evgenia Protasova
Table 3. Produced Water Injection in the USA* (SPE, 2009)
Place
Injection for EOR
Injection for
Disposal
Total injected
volume
California
232.12 million m3/
year
54.05 million m3/
year
286.17 million m3/
year
New
Mexico
55.65 million m3/
year
30.21 million m3/
year
85.86 million m3/
year
Texas
842.63 million m3/
year
190.78 million m3/
year
1033.41 million m3/
year
Total
1130.4 million m3/
year
275.04 million m3/
year
million m3/year
*Data is converted from barrels to m3 with 1 barrel = 0.1589873 m3.
Table 4. International Environmental Discharge Limits of Oil in Water
(Statoil, 2014)
Location
Maximum Oil Concentration (mg/L)
North Sea
30
USA Offshore Effluent Guidelines
(EPA)
29 average (42 maximum)
NE Atlantic & Arctic Oceans
40
Mediterranean Sea
10 - 15
Caspian Sea
20 (under review)
Red Sea
15
Nigeria
15 onshore; 30 offshore
Indian Ocean (BH)
48
Western Australia
30 (50 maximum)
ÍNDICE
128
Petroleum production in symbiosis with fisheries?
The norwegian experience
Table 5. Comparison of BAT (Statoil, 2014)
Technology
Treatment
Hydrocyclone Primary/
secondary
Driving
force
Enhanced
gravity;
centrifugal
force
Removal
efficiency
Field of
application
Mainly oil fields; high/
low water flow, high/
low OiW.
80-95 % of oil.
Heidrun
Mainly oil fields. High/
low water flow; high/
low OiW.
30-90 % oil
Heidrun
removal; depends
on inlet OiW.
Capacity
Applicability
2-10 m3/h
540 m3/h
CFU*
Primary/
secondary
CTour
Tertiary
Coalescence 125-300
(enhancing) / extraction m3/h
Degasser
Primary/
secondary
MPPE**
Tertiary
Coalescence 43-90 m3/h All fields. Removes
dissolved components;
(enhancing) / extraction ***
low water flow; low
OiW; low solids and
scale potential.
Dissolved
flotation/
gravity
200 m3/h
Oil fields. Removes
95 % removal of
dissolved components dispersed oil.
and a certain amount
of corrosion inhibitor.
High/low water flow;
condensate must be
available.
All fields. High/low
water flow; low OiW,
low salinity water
should be carefully
evaluated.
30-80 % oil
Statfjord B
removal, depends
on inlet OiW,
droplet size
and operating
performance.
50 - 90 %
dispersed oil
removal; 90 - 99
% of BTEX, PAH,
NPD.
Tested at
Troll A,B,C
Up to 99 % oil
removal.
Tested at
Sleipner
Coalescer
Tertiary
Coalescence 35-180
(enhancing) / extraction m3/h
All fields. High/low
water flow; high/low
OiW; low solids and
scale potential.
Centrifuge
Primary/
secondary
Gas/condensate fields. Above 95 % oil
Open drain; low flow; removal, depends
high/low OiW.
on flow rate and
droplet size.
Filters/
membranes
Tertiary
Coalescence
(enhancing) / extraction
Enhanced
gravity
40-100
m3/h
Statfjord A, B
Åsgard A.
Ekofisk
2, Gyda,
Heidrun,
Snorre B
Gas/condensate fields. _
Low water flow; low
OiW; low solids and
scale potential;
* CFU – Compact Flotation Unit.
** MPPE – Macro Porous Polymer Extraction.
*** Data is taken from Veolia Water Solutions and Technologies.
Available at: http://www.tuvnel.com/assets/content_images/2_3%20VWS%20
MPP%20Systems.pdf.
ÍNDICE
129
DOI: 10.14198/MDTRRA2015.ESP.07
The common octopus fishery in South Portugal:
a new shelter-pot
Teresa Cerveira Borges
Patricia Calixto
João Sendão
Centre of Marine Sciences (CCMAR)
University of Algarve
Campus de Gambelas. 8005-139 Faro, Portugal
Contact: [email protected]
Résumé
Le poulpe est une des plus importantes ressources marines
au Portugal, en particulier dans la région Sud (Algarve). Les
engins de pêche les plus utilisés sont les “alcatruz” et le
“covo”. Le “alcatruz” est un pot-abri traditionnellement faite
d’argile, avec une forme d’amphore, mais récemment des
pots cylindriques en plastique ont été introduits et sont deve-
ÍNDICE
130
The common octopus fishery in South Portugal:
a new shelter-pot
nu plus populaire. Les “covos” sont des cages-pièges métalliques appâtés couverts par un filet en plastique.
Bien que très populaire parmi les pêcheurs, le “alcatruz” traditionnelle à base d’argile a été remplacée par des pots en
plastique cylindriques avec un grand succès, en raison de sa
résistance à frein. Dans une tentative de continuer à utiliser la
forme traditionnelle d’amphore, un nouveau type de pot-abri
en plastique a été construit en association avec les pêcheurs.
A fin d’étudier le comportement du poulpe commun (Octopus
vulgaris) vers les pots traditionnels (pot amphore en argile),
les pots plus modernes (pot cylindrique en plastique) et le
nouveau pot (pot amphore en plastique), des expériences
ont été réalisées dans des réservoirs contrôlés. Trois principales questions ont été tentées de répondre concernant les
préférences des poulpes communs envers les pots: 1) Quel
type de matériel: plastique ou argile (traditionnel); 2) Quelle
forme: cylindrique ou amphore (traditionnel); 3) Quelle couleur: blanc, noir ou rouge brique (traditionnel). Les résultats
n’ont indiqué pas de préférence vers le matériel de l’engin de
pêche; une forte préférence pour la forme traditionnelle d’amphore; et une forte préférence pour la couleur noire.
Mots Clés: Pêcherie de poulpe; pots-abris; engins de pêche
de poulpe; comportement du poulpe.
ÍNDICE
131
Teresa C. Borges, Patricia Calixto & João Sendão
Abstract
The octopus is one of the most important marine resources in
Portugal, especially in the South, the Algarve region. The fishing gears mostly used are the “alcatruz” and the “covo”. The
“alcatruz” is a shelter-pot traditionally made of clay, with an
amphora shape, but recently plastic cylindrical pots were introduced and became more popular. “Covos” are baited metal
cage-traps covered by a plastic net.
Although very popular among fishermen, the traditional “alcatruz” made of clay has been replaced by cylindrical plastic
pots with great success, due to its resistance to brake. In an
attempt to continue using the traditional amphora-shape, a
new type of plastic pot was built in association with fishermen.
To study the behaviour of the common octopus (Octopus vulgaris) towards the traditional amphora clay shelter-pot, the
cylindrical plastic shelter-pot and the new amphora plastic
shelter-pot, several experiments were performed in controlled
tanks. Three main questions were attempted to answer concerning the preferences of the common octopus towards the
pots: 1) What kind of material: plastic or clay (traditional); 2)
What shape: cylindrical or amphora (traditional); 3) What colour: white, black or red brick (traditional). The results showed
no particular preference towards the material of the fishing
ÍNDICE
132
The common octopus fishery in South Portugal:
a new shelter-pot
gear; a strong preference for the traditional amphora shape;
and a strong preference for the black colour.
Keywords: Octopus fishery; octopus shelter-pots; octopus
fishing gear; octopus behaviour.
Introduction
I
n Portugal, the common octopus (Octopus vulgaris) is the
most relevant cephalopod species for the fishing sector,
representing in the last few years an average of 6% of
the total catch landed and 12% in value traded, which corresponds to the 3rd and 2nd place in the national ranking of
important commercial species, respectively. The Algarve region is responsible for more then 50% of the national octopus
landings, being mostly (90%) from the artisanal fishery (Docapesca, 2015).
One of the most traditional southern Portuguese fishing gear
for the common octopus (Octopus vulgaris) is a shelter-pot
made of clay or plastic, with one opening and not baited (“alcatruz”), hung from a line and set along the sea floor. This
fishing method is based on the knowledge of the octopus behaviour, which presents cover-seeking habits and territoriality.
As the animal prevents the entry of other individuals, a large
number of pots must be set in order to make a commercial-
ÍNDICE
133
Teresa C. Borges, Patricia Calixto & João Sendão
ly viable catch. Although, traditionally these shelter-pots are
made of clay and with an amphora shape, more recently they
have been replaced by cylindrical shape plastic shelter-pots
due to their resistance to brake.
The success of a fishery depends of the fishermen knowledge
of the natural conditions and behaviour of the species (Rathjen, 1991), specially the behaviour of the target species towards a specific fishing gear (Watanuki & Kawamura, 1999).
Since in the commercial octopus fishery with shelter-pots,
only the big size animals are kept to be sold (Sanchez & Obarti, 1993) and all small size individuals are discarded to sea
mostly alive (Groneveld, 2000), with less impact to benthonic
communities (Jennings & Kaiser, 1998; Eno et al., 2001), a
new type of plastic shelter-pot was built in association with
fishermen, as an attempt to continue using the traditional amphora shape, as well as to decrease the costs since clay pots
are more expensive than plastic pots and easily breakable.
Therefore, a new type of pot was constructed and several
laboratory experiments were performed to study the behaviour and preferences of the common octopus concerning the
material, shape and colour of the fishing shelter-pots.
ÍNDICE
134
The common octopus fishery in South Portugal:
a new shelter-pot
Material and Methods
For the experiments, two similar cylindrical tanks were arranged (the adaptation tank and the experimental tank), with
2.5m diameter and 3.3m3 of volume, both in an open water
system. While the adaptation tank was covered with two nets
– one to avoid possible escapes (Boyle, 1991; Wood & Anderson, 2004) and the second to avoid direct sun light – the water column of the experimental tank was decreased to avoid
escapees.
All specimens of common octopus (Octopus vulgaris) were
caught by fishermen with pots and traps and transferred immediately to the adaptation tank, where several PVC tubes
were put in the tank, since the presence of shelters, good
water quality and sufficient food allows several octopus specimens cohabit in the same tank without cannibalism problems
(Boyle, 1991). Specimens weighed between 1.2kg and 1.9kg
and with the exception of one, all were males.
Octopus were fed daily during daylight (8 to 10 o’clock in the
morning) and feeding consisted of clams (Cerastoderma edule), crab (Carcinus maenas) and mussels (Mytilus sp). However, during experiments only mussels were given.
ÍNDICE
135
Teresa C. Borges, Patricia Calixto & João Sendão
Fishing gear characteristics
The clay pots used in this experiment are the same as normally used in the fishery – amphora shape, redbrick colour,
33cm height, 13cm opening diameter, 9liters inside volume
and a settling angle of 38º (Figure 1A).
The other two types of pots used were made of plastic (vinyl
chloride), being one of cylindrical shape, black colour, 35cm
height, 11cm opening diameter, 7liters volume and approximately 0º settling angle (Figure 1B), and the other (the new
type of shelter-pot) of amphora shape, 31cm height, 12cm
opening diameter, 8.6 litres volume and 30º settling angle
(Figure 1C). On both plastic pots cement is used to be able to
descend in the water column.
Observation system
To be able to observe the octopus behaviour with no interference from the observer (Martin & Bateson, 1996) and in
a continuous form (24 hours a day), an observation system
was mounted (Figure 2), with a record camera (EV-CAM HZr)
above and in the middle of the experimental tank, to observe
the full size tank. This camera was connected to a TV (Sony
Digital 8 GV-D800E PAL) installed in an observatory room,
ÍNDICE
136
The common octopus fishery in South Portugal:
a new shelter-pot
13 cm
33 cm
38º
(A)
11 cm
35 cm
0º
(B)
12 cm
31 cm
30º
(C)
Figure 1. Characteristics of octopus fishing shelter-pots studied.
(A) Traditional (amphora shape) clay shelter-pot (adapted from
Borges, 2000). (B) Plastic shelter-pot (cylindrical shape). (C) New
plastic shelter-pot (amphora shape).
ÍNDICE
137
Teresa C. Borges, Patricia Calixto & João Sendão
(Sony digital 8)
(Time Laps video)
(Sony digital 8)
INDIRECT OBSERVATION
DIRECT OBSERVATION
(TV)
(Experimental Tank)
Figure 2. Diagram of the observation system mounted to observe and
to record the octopus behaviour in continuous and without human
interference.
through which direct observation were possible. In the absence of the observer, the camera was connected to a video “time-lapse 168” (STV-S3000P Sony), which would record
everything and later images were studied. This type of record
was used specifically during night-time. Above the tank a florescent light connected to a timer was used, to pattern natural
photoperiod.
ÍNDICE
138
The common octopus fishery in South Portugal:
a new shelter-pot
Experiment design and procedure
Three experiments were conducted to test the preferences
concerning the type of material, the shape and the colour of
the shelter-pots. Five specimens were used in each experiment, being one individual observed at each time, during
three days and nights. Each of the experiments was already
mounted when the specimens were put in the tank. For each
experiment only one variable was tested.
To test the material – clay or plastic – the shelter-pots used
were the traditional clay amphora shape pots and the new
plastic amphora shape pots, two of each, all of redbrick colour.
To test the shape preferred – cylindrical or amphora – the pots
used were the two types of plastic pots, two of each, and both
black.
To test the colour – redbrick, black or white – the pots used
were the new plastic amphora shape pots, two of each colour.
Procedure and data analyses
All behavioural experimental procedures and data analyses
followed were according to Martin & Bateson, 1996.
ÍNDICE
139
Teresa C. Borges, Patricia Calixto & João Sendão
The octopus position in relation to the shelter-pot was registered as sample points every fifteen minutes: 0 for absence
(the octopus was not touching any shelter-pot) and 1 for presence in shelter-pot, being here differentiated the presence
inside the shelter-pot or only touching the shelter-pot. The
recorded position was the one observed at the beginning of
every minute of every sample point.
The proportion of time spent by each specimen in different
shelter-pots was calculated, being X one shelter-pot with a
specific material, shape or colour:
Proportion of time in X = n. of presences in X / n. of points in the sample
The percentage of time spent by each specimen in each shelter-pot was calculated:
% time in Xtotal = n. of presences in Xtotal / n. of points in the sample * 100
The average for each pot was also calculated, adding the percentages of all individuals:
Average % time in Xtotal = ∑ % time in Xtotal / n. of individuals
All calculations were made for night and daytime data separately. For each of the experiments a χ2 test was applied
to check significant differences between the results obtained
and the results expected (H0 – no differences exist between
the variables tested).
ÍNDICE
140
The common octopus fishery in South Portugal:
a new shelter-pot
Results
The results obtained during day and night times for the three
experiments are summarized in Table 1 and Figure 3.
The behaviour adopted by all specimens during the three experiments carried out, was similar. The specimens spent most
of the time inside the shelter but also swimming and crawling
across the tank, stopping in its different areas. When specimens were not inside shelter-pots, they often were in contact
with it, assuming different positions in relation to it, like above
the pot, half in half out, sideways, etc. However, the most
adopted position by octopus specimens for all experiments
was inside the shelter-pots.
Concerning the experiment on shelter-pot material, the time
spent by octopus specimens on each material did not vary
much, with 26-24% of time spent on clay shelter-pots and 3532% in plastic, day and night respectively. No significant statistical differences were found (χ² test with P > 0.05). (Table
1; Figure 3 A)
Concerning shape experiments, significant statistical differences were found (χ² test with P < 0.05) between the times
spent by specimens in the amphora shelter-pots (53-41%)
ÍNDICE
141
Teresa C. Borges, Patricia Calixto & João Sendão
Shelter-pot
%
time
Clay
26
Plastic
35
Amphora
53
Cylindrical
30
Black
67
Redbrick
19
White
0
Colour
Shape
Exps.
Material
Day
Night
χ2
Significance
>0,05
NS
<0,05
SD
<0,05
SD
Shelter-pot
% time
Clay
24
Plastic
32
Amphora
41
Cylindrical
12
Black
52
Redbrick
13
White
0,002
χ2
Significance
>0,05
NS
<0,05
SD
<0,05
SD
Table 1. Data summary of the common octopus behaviour towards
shelter-pots of different material, shape and colour, during day and
night, with χ2 test results applied to each experiment. (n = 5). (NS –
not significant; SD – significant differences).
and in the cylindrical ones (30-12%), day and night respectively. (Table 1; Figure 3 B).
Concerning colour of the shelter-pots, significant statistical
differences were also found (χ² test with P < 0.05) between
the times spent by octopus in the black colour pots (67-52%),
in the redbrick pots (19-13%) and in white pots (0-0.002%),
day and night respectively. (Table 1; Figure 3 C).
ÍNDICE
142
The common octopus fishery in South Portugal:
a new shelter-pot
Night
Day
(A)
(B)
(C)
Figure 3. Percentage of time spent by octopus specimens in shelterpots (A) of different material (clay versus plastic), (B) of different
shape (amphora versus cylindrical) and (C) of different colours (black
vs. redbrick vs. white), during day and night times. (n.c. – no choice)
ÍNDICE
143
1
Teresa C. Borges, Patricia Calixto & João Sendão
Comparing day and night behaviour only results on the shelter-pot material experiment show significant statistical differences (χ² test with P < 0.05).
Discussion
The success of a fishery depends on fishermen knowledge of
the natural conditions and behaviour of the species (Rathjen,
1991), specially the behaviour of the target species towards
a specific fishing gear (Watanuki & Kawamura, 1999). The
octopus fishing success of the shelter-pots is mainly due to
the fact that this fishing gear catches mainly big size animals,
while fishing nets, like trawl nets, catch specimens of all sizes,
mainly small size animals (Sanchez & Obarti, 1993).
In all experiments, the percentage of time spent by different
individuals inside the shelter-pots was very high, reaching almost 100% in some cases. Several authors reached similar
results, e.g., Mather (1988) determined a percentage of occupancy of 89%, while Katsanevakis & Verriopoulos (2004)
presented a value of 93%. For these authors, this shows how
important shelters are for octopus, probably one of the most
important factors in their distribution (Mather, 1982a; Mather,
1982b).
ÍNDICE
144
The common octopus fishery in South Portugal:
a new shelter-pot
During these experiments, although the specimens spent
most of their time inside the shelter-pots to avoid predators
(Mather, 1982b), it was also possible to observe that common
octopus when not inside the shelter-pots were resting on top
or beside them but always in contact with the shelter. This fact
was also observed by Boyle (1980) showing the importance
of the shelters for octopus.
In the experiment on material preferences, although showing
a slight preference for the plastic, this difference was not statistically significant. According to Boyle (1980) and Katsanevakis & Verriopoulos (2004), this is probably due to the fact
that octopus occupies and uses all type of materials and objects to shelter, from natural features on the substrate (stone
assemblages, shells) to human waste (pieces of porcelain,
tires, and all sort of debris). Both the clay and new designed
plastic shelter-pots present more or less the same characteristics in terms of size, internal volume, settling angle, aperture
size and light entrance capacity. Therefore, and since according to Mather (1982b) these are the main characteristics for
choosing a shelter, no significant differences were found regarding the choice of material of the shelter-pots.
Concerning the preferences regarding shape (cylindrical vs.
amphora) of the shelter-pots, octopus showed a preference
ÍNDICE
145
Teresa C. Borges, Patricia Calixto & João Sendão
towards the amphora shape. This may be due to the different
shape, internal volume and settling angle of the pots, since
the height and aperture diameter in both models seem to be
not sufficiently different to influence the octopus choice. The
amphora shape provides a narrow entrance to a wider inside
area (greater inside volume) followed by a smaller inside
area/volume in the back within the same housing/pot, which
in the case of the cylindrical shelter-pots doesn’t since the inside volume is the same all along the pot. This may determine
the octopus choice since, according to Mather (1982b), octopus prefer gastropod shells to bivalve shells, being the form
of the first more like the shape of the new amphora shape
shelter-pot. In some laboratory experiments, Rama-Villar et
al. (1997) observed that octopus showed a clear preference
for larger shelters, and Mather (1982a) also say that octopus
are attracted by large artificial shelters. Since the new amphora shape shelter-pots have a volume of 8.6 litres and the
cylindrical shape 7.0 litres, their preference agrees with the
literature. The fact that they spend most of their time inside
shelters (Boyle, 1980), and they even consume their prey
within this (Mather, 1991a; Sanchez and Obarti, 1993) may
justify the octopus preference for a bigger volume.
ÍNDICE
146
The common octopus fishery in South Portugal:
a new shelter-pot
In addition to size/volume, the fact that the new shelter-pots
have a higher settling angle causes its opening to be more
upwards, lying at a height of 12cm above the ground, providing a better ability for the octopus to observe the surroundings
from inside the shelter, while remaining protected. According
to Mather (1991b), this characteristic is very important for the
octopus choice of shelters at sea. The opening of the cylindrical shelter-pot is 6cm from the ground, therefore, with a
smaller settling angle, which probably reduces the octopus
feeling of shelter, as well as the capacity of observation outside. In practice, the other disadvantage of a small or zero
settling angle is that in the natural environment the probability
of these shelter-pots to be filled with sediment are higher and
consequently, not chosen by the octopus.
Regarding the octopus colour preferences, this was very
clear, with the choice of black colour shelter-pots to be significant compared with the redbrick and white ones. Okamoto et
al. (2001) also obtained the same results, stating that octopus
prefer dark colours despite the contrast with the background.
The percentage of occupancy of the white shelter-pots was
almost negligible, even appearing that octopuses avoided this
shelter-pot, which according to Bradley & Messenger (1977),
can be explained by the fact that octopus are usually animals
ÍNDICE
147
Teresa C. Borges, Patricia Calixto & João Sendão
that hide and move in the dark. Roper (1997) makes a compilation of unpublished data from Voss, where it states that
white shelter-pots do not give good catch results. According
to Messenger (1977; 1979), it is likely that octopus cannot
distinguish different colours but differentiates objects by way
of contrast. However, studies by Kawamura et al. (2001) in
Octopus aegina, demonstrates that the species has colour
vision, whereas Octopus vulgaris did not, making choices
based on the object tonality and preferring the darker ones.
Most of the studies done on this subject are experiences
of punishment–reward type, where different colours and/or
shapes of objects are displayed to octopus to see if they learn
to distinguish those objects and not in terms of occupancy of
a shelter of a particular colour. Sutherland (1962) conducted
an experiment to see if octopus discriminate shapes but also
used different colours, being possible to observe that the largest number of attacks was done to black objects. According to
Messenger & Sanders (1972), octopus prefers black instead
of white (in cream colour tanks). Bradley & Messenger (1977)
state that the preference in octopus is by contrast and not by
the colour itself. In experiments with Sepia esculenta, Watanuki et al. (2000) concluded that this species does not approach traps covered with black plastic in white background
ÍNDICE
148
The common octopus fishery in South Portugal:
a new shelter-pot
tanks because of the contrast and brightness caused by plastic. Therefore, these authors seem to suggest the same as
the present study, namely that octopus prefers dark colours.
Octopus are nocturnal animals both in laboratory and in captivity (Wells et al., 1983), having different levels of activity
during day and night, therefore, being able to have different
choices during these two periods. However, this did not occur in our experiments, probably because according to Wells
et al. (1983) Octopus vulgaris is no longer strictly nocturnal
when it is fed in captivity by changing its cycle and level of activity depending on the time it is fed. If fed in the morning (as it
was in these experiments) their activity peaks become less intense and more scattered throughout the day, increasing also
the time they are active (Wells et al., 1983). Therefore, since
their behaviour was fairly regular throughout the 24 hours of
observations, there were no significant differences in the behaviour and choices of the shelter-pots between nocturnal
and daytime. Another relevant factor may have been that the
lighting system mounted did not cause a marked difference
between the light intensity of day and night, not truly simulating the natural photoperiod, leading again individuals to divide
their activity along the daily 24 hours and thus not to show
behavioural differences over that period.
ÍNDICE
149
Teresa C. Borges, Patricia Calixto & João Sendão
Conclusions
The conclusion reached was that the common octopus
showed a clear preference for the new amphora shape shelter-pots, comparing to the cylindrical ones, and the black
colour shelter-pots comparing to the redbrick or white. Concerning the material of the different shelter-pots there was no
significant differences between plastic and clay. Therefore, it
seems likely that the new shelter-pot will be more efficient in
terms of catches.
References
BORGES, T.C.; ERZINI, K.; IVO, G.; GONÇALVES, I.A.; PEREIRA,
A.; RAPOSO, C.; SENDÃO, J.C.; RAMOS, F.; SILVA, L. and SOBRINO, I. 2000. Cephalopod resources dynamics and fisheries
trends in the Algarve and the Gulf of Cadiz (ALCACEPH). Centro
de Ciências do Mar, Universidade do Algarve. Instituto Español de
Oceanografia (IEO). Final Report to the European Commission DG
Fisheries. Study Project Nº 97/086.
BOYLE, P.R. 1980. Home occupancy by male Octopus vulgaris in a
large seawater tank. Anim. Behav. 28: 1123-1126.
BOYLE, P.R. 1991. The UFAW handbook on the care and management of cephalopods in the laboratory. UFAW Press.
ÍNDICE
150
The common octopus fishery in South Portugal:
a new shelter-pot
BRADLEY, E.A. and MESSENGER, J.B. 1977. Brightness preference
in Octopus as a function of the background brightness. Mar. Behav.
Physiol. 4: 243-251.
ENO, N.; MACDONALD, D.; KINNEAR, J.; AMOS, S.; CHAPMAN, C.;
BUNKER, F. and MUNRO, C. 2001. Effects of crustacean traps on
benthic fauna. ICES. J. Mar. Sci. 58: 11-20.
GRONEVELD, J. 2000. Stock assessment, ecology and economics
as criteria for choosing between trap and trawl fisheries for spiny
lobster Palinurus delagoae. Fish. Res. 48: 141-155.
HANLON, R. and MESSENGER, J. 1996. Cephalopod behaviour.
Cambridge University Press.
JENNINGS, S. and KAISER, M.J. 1998. The effects of fishing on marine ecosystems. Adv. Mar. Biol. 34: 201-352.
JOUFFRE, D.; INEJIH, A. and CAVERIVIÉRE, A. 2002. Les pots
à poulpes: un danger pour la resource? In: Caverivière, A.; Thiam, M. and Jouffre, D. (eds). Le Poulpe Octopus vulgaris: Sénégal et Côtes Nord-ouest Africaines. Acts du Colloque. Centre de
Recherches Océanografiques de Dakar-Thiaroye. (14-18 Février
2000): 247-255.
KATSANEVAKIS, S. and VERRIOPOULOS, G. 2004. The ecology of
Octopus vulgaris Cuvier, 1797, on soft sediment: availability and
types of shelter. Sci. Mar. 68: 147-157.
KAWAMURA, G., NOBUTOKI, K., ANRAKU, K., TANAKA, Y. and OKAMOTO, M. 2001. Color discrimination conditioning in two Octopus,
ÍNDICE
151
Teresa C. Borges, Patricia Calixto & João Sendão
Octopus aegina and Octopus vulgaris. Nippon Suisan Gakkaishi.
67: 35-39.
MARTIN, P. and BATESON, P. 1996. Measuring Behaviour – an introduction guide. Cambridge University Press.
MATHER, J.A. 1982a. Factors affecting the spatial distribution of natural populations of Octopus joubini Robson. Anim. Behav. 30: 11661170.
MATHER, J.A. 1982b. Choice and competition: Their effects on occupancy of shell homes by Octopus joubini. Mar. Behav. Physiol. 8:
285-293.
MATHER, J.A. 1988. Daytime activity of juvenile Octopus vulgaris in
Bermuda. Malacologia. 29: 69-76.
MATHER, J.A. 1991a. Foraging, feeding and prey remains in middens
of juvenile Octopus vulgaris (Mollusca: Cephalopoda). J. Zool. of
Lond. 224: 27-39.
MATHER, J.A. 1991b. Navigation by spatial memory and use of visual
landmarks in octopuses. J. Comp. Physiol. A. 168: 491-497.
MESSENGER, J.B. 1977. Evidence that Octopus is colour blind. J.
Exp. Biol. 70: 49-55.
MESSENGER, J.B. 1979. The eyes and skin of Octopus: compensating for sensory deficiencies. Endeavour. 3: 92-98.
MESSENGER, J.B. and SANDERS, G.D. 1972. Visual preference and
two-cue discrimination learning in Octopus. Anim. Behav. 20 (3):
580-585.
ÍNDICE
152
The common octopus fishery in South Portugal:
a new shelter-pot
OKAMOTO, M.; KAZUHICO, A.; KAWAMURA, G. and TANAKA, Y.
2001. Selectivity of color shelter by Octopus vulgaris and Octopus
aegina under different background colors. Nippon Suisan Gakkaishi. 67: 672-677.
RAMA-VILLAR, A.; FAYA-ANGUEIRA, V.; MOXICA, C. and REY-MÉNDEZ, M. 1997. Engorde de pulpo (Octopus vulgaris) en batea. In:
VI Congresso Nacional de Acuicultura. Cartagena. Ministério da
Agricultura, Pesca y Alimentacion.
RATHJEN, W.F. 1991. Cephalopod capture methods: an overview.
Bull. Mar. Sci. 49: 494-505.
ROPER, C.F. 1997. Experimental octopus fisheries: two case studies.
In: Lang, M.A. and Hochberg, F.G. (eds.). Proceedings of the Workshop on The Fishery and Market Potential of octopus in California.
Smithsonian Institution. Washington.
SANCHEZ, P. and OBARTI, R. 1993. The biology and fishery of Octopus vulgaris caught with clay pots on the Spanish Mediterranean
coast. In: Okutani, T., O’Dor, R. and Kubodera, T. (eds.). Recent
Advances in Cephalopod Fisheries Biology. Contributed papers to
1991 CIAC International Symposium and Proceedings of the Workshop on Age, Growth and Population Structure. Tokai University
Press. Tokyo. 477-487.
SUTHERLAND, N.S. 1962. Visual discrimination of shape by Octopus:
squares and crosses. J. Comp. Physiol. Psychol. 55: 939-943.
WATANUKI, N. and KAWAMURA, G. 1999. A review of cuttlefish basket trap fishery. South Pacific Study. 19: 31-48.
ÍNDICE
153
Teresa C. Borges, Patricia Calixto & João Sendão
WATANUKI, N.; HIRAYAMA, I. and KAWAMURA, G. 2000. Why do
cuttlefish Sepia esculenta enter basket traps? Space occupation
habit hypothesis. Fish. Sci. 60: 190-197.
WELLS, M.J.; O’DOR, R.K.; MANGOLD, K. and WELLS, J. 1983. Diurnal changes in activity and metabolic rate in Octopus vulgaris.
Mar. Behav. Physiol. 9: 275-287.
WOOD, J.B. and ANDERSON, R.C. 2004. Interspecific evaluation of
octopus escape behaviour. J. Appl. Ani. Welf. Sci. 7: 95-106.
ÍNDICE
154
DOI: 10.14198/MDTRRA2015.ESP.08
Environmental sustainability analysis of
the clam (Ruditapes decussatus, Linaeus
1758) fishery in Zaboussa production area
(southeastern Tunisia) using the MSC fisheries
standard
Rafik Nouaili1, 2, Carlos Montero-Castaño1, 3,
José Luis Sánchez-Lizaso1
Department of Marine Sciences and Applied Biology, University of
Alicante, POB, 99, E-03080 Alicante, Spain.
2
General Directorate for Fisheries an Aquaculture, 30 Rue Alain
Savary 1002 Tunis Tunisie.
3
Marine Stewardship Council, Paseo de La Habana, 26, 7º puerta 4,
28036, Madrid, Spain.
1
Abstract
The Tunisian grooved carpet clam Ruditapes decussatus
(Linaeus 1758) fishery is of interest to the authorities due to
its social importance and its economic contribution given the
ÍNDICE
155
Rafik Nouaili, Carlos Montero-Castaño
& José Luis Sánchez-Lizaso
export nature of its product. Efforts have been made to ensure proper management and development of this fishery. A
sustainable exploitation of the natural resource is of crucial
relevance to guarantee the socio-economic role of the fishery.
Therefore, sustainability should be integrated within those
management measures and development actions. To analyse
the sustainability level of the fishery concerning the main obstacles and actions needed to achieve it, the most recognized
tool worldwide is the MSC certification program throughout its
fisheries standard. The present study assesses the Zaboussa
production area clam fishery using the 31 performance indicators of the 3 principles of the MSC standard for sustainable
fisheries. The results of the assessment show that this fishery
could be potentially considered sustainable and, therefore,
certifiable though implementing an action plan to satisfy four
conditions to improve research, surveillance and monitoring
measures.
Keywords: clam fishery, Ruditapes decussatus, MSC certification, management, sustainability, Tunisia, Mediterranean
Sea.
ÍNDICE
156
Environmental sustainability analysis of the clam (Ruditapes
decussatus, Linaeus 1758) fishery in Zaboussa production
area (southeastern Tunisia) using the MSC fisheries standard
Résumé
La pêcherie tunisienne de la palourde croisée d’Europe Tunisienne Ruditapes decussatus (Linaeus 1758) présente un
intérêt certain en raison de son poids social et économique
et sa contribution dans la dynamique des exportations des
produits de la pêche. Des efforts ont été déployés pour assurer la gestion et la promotion de cette filière. Une exploitation
durable de la ressource naturelle est donc d’une importance
cruciale pour garantir le rôle socio-économique de la pêche.
Ainsi, la durabilité devrait impérativement être intégrée au niveau des mesures de gestion et des actions de développement. Pour analyser le niveau de durabilité d’une pêcherie en
mettant en exergue les principales contraintes et les actions
nécessaires pour y remédier, l’outil le plus reconnu au monde
est le programme de certification MSC dont les standards
sont souvent utilisés pour plusieurs pêcheries.
La présente étude a évalué la pêche à pied de la palourde
dans la zone de production de Zaboussa en utilisant 31 indicateurs de performance des 3 principes de la norme MSC.
Les résultats de l’évaluation montrent que cette pêcherie
pourrait être considérée potentiellement bien gérée et, par
conséquent, éligible à cette certification à condition d’établir
un plan d’action pour remplir quatre conditions ayant pour
ÍNDICE
157
Rafik Nouaili, Carlos Montero-Castaño
& José Luis Sánchez-Lizaso
principaux thèmes la recherche et investigations de l’espèce
cible et le contrôle et surveillance de l’activité de pêche.
Mots-clés : pêche de la palourde, Ruditapes decussatus,
certification MSC, gestion, durabilité, la Tunisie, la mer Méditerranée.
1. Introduction
T
he world’s marine fisheries resources are under enormous pressure. The global fishing effort is estimated to
exceed the optimum by a factor of three to four (Pauly
and al., 2002). FAO reported that Mediterranean and Black
Sea had 33 percent of assessed stocks fully exploited, 50
percent overexploited, and the remaining 17 percent non-fully
exploited in 2009 (Sofia, 2014). The reasons for this crisis
can be found, not just in illegal practices but also in fisheries management failures such as an inappropriate fleet modernization, inadequate efficiency increase in fishing gear and
methods or the increase of water pollution (Nouaili, 2013).
Modern fisheries management is moving towards a precautionary approach to ensure sustainable utilization of our marine resources (ICES, 1997). Several mechanisms have been
introduced by governments at the national, regional and international levels to face sustainability (Nouaili, 2013). Notably
ÍNDICE
158
Environmental sustainability analysis of the clam (Ruditapes
decussatus, Linaeus 1758) fishery in Zaboussa production
area (southeastern Tunisia) using the MSC fisheries standard
in the case of Tunisia there should not only be an emphasis
on decreasing the fishing effort but also on the coordination
with the European Common Fisheries Policy. Additionally, the
globalized nature of the seafood market worldwide implies
that commercial issues are key features to integrate in the
decision making process of the fisheries management. Thus,
commercial tools such as eco-labels and certification programs might play a relevant role to drive improvements within
fisheries. Fisheries certification is an emerging market-based
instrument existing alongside traditional regulatory and economic policies (Pérez-Ramirez, 2012).
Since the 1990s several eco-labelling schemes for fisheries
have developed in response to public society concerns regarding the sustainability of fish stocks, the impacts of fisheries on other species and the effects of the fishing activity on
marine habitats (Kirby et al., 2014).
The Marine Stewardship Council (MSC) is the most-known
fisheries certification organization (Froese et al,. 2012). MSC
Principles and Criteria are further designed to recognize and
emphasize that management efforts are most likely to be successful in accomplishing the goals of conservation and sustainable use of marine resources when there is full co-operation among the full range of fisheries stakeholders, including
ÍNDICE
159
Rafik Nouaili, Carlos Montero-Castaño
& José Luis Sánchez-Lizaso
those who are dependent on fishing for their food and livelihood (MSC, 2002).
There are currently 216 certified fisheries in the World and
111 in assessment and 10.5% of wild caught global seafood
landings are MSC certified or in assessment (MSC a, 2015).
Among these 327 fisheries, there are some clams’ fisheries
included which mobilizes a large community of small-scale
fishers throughout the world. The first fishery in this category to become MSC certified was the Burry Inlet estuary
hand-raking fishery on the western part of the United Kingdom, which is certified since 2001 (MSC b, 2015).
The clam fishery in Tunisia has an important socio-economic
impact. On one hand, it implies an important contribution in
terms of employment and, on the other hand, the export of
clams constitutes a considerable engine for economic growth
in the region (Nouaili, 2007). Several projects have been developed, with the support of the Tunisian Government, addressed to support the clam fishery sector through the establishment of a regulatory and institutional basis or the improvement of supervision and monitoring activities. Although
the achievements of those projects and the fact that the clam
sector seems overall to be well organized, a lot of measures
and actions could be considered in order to improve the en-
ÍNDICE
160
Environmental sustainability analysis of the clam (Ruditapes
decussatus, Linaeus 1758) fishery in Zaboussa production
area (southeastern Tunisia) using the MSC fisheries standard
vironmental and socioeconomic performance of the fishery,
especially in the field of resource management and promotion
of the product.
A potential certification of the Tunisian clam fishery against
the requirements of the MSC certification program might not
only lead to an improved market-access and hence a potential increase in prices, but also to serve as a monitoring tool
to assure the sustainable exploitation of clams which could
be expanded to other neighbouring countries in the southern
Mediterranean region. This article is focused on the presentation and description of activities related to fishing, processing
and marketing clams (Ruditapes decussatus) in Tunisia and
the sustainability analysis against the MSC fisheries standard
of this fishery in the Zaboussa production area.
2. Presentation and description of the clam sector in
Tunisia
Ruditapes decussatus (Linnaeus, 1758) is the only species of
bivalve molluscs which is harvested in the wild on the Tunisian coast (Zamouri-Langar, 2010). Its fishing activity started
at the turn of the 1950’s at a time when foreign demand for
clams was growing. The Tunisian coastal zone is known for
their natural populations of clam in some particular areas. This
ÍNDICE
161
Rafik Nouaili, Carlos Montero-Castaño
& José Luis Sánchez-Lizaso
irregular distribution of resources, concentrated in the south
of Tunisia and nearly absent in the central area, explains the
presence of a large population of by foot fishermen, especially
in the regions of Sfax, Gabes and Medenine (Nouaili, 2013).
At the begging of the fishery, Tunisian clams were not subject
to any prior treatment and were exported in bulk to European countries. The depuration procedure was responsibility of
importers meaning that there was a shortfall for Tunisian operators (Belkahia, 1997). Due to the trade liberalization, new
standards and requirements have been established for imports of seafood products in several countries including the
European market. The European Union (EU) has enacted
numerous directives laying down the sanitary and hygienic
conditions for the production and the access to the market
of seafood products and live bivalve molluscs in particular
(Nouaili, 2007).
Since 1995, Tunisia has been implementing several actions
to adapt the production, processing, transportation and marketing activities to the European market requirements. These
efforts have resulted in the accreditation and registration of
Tunisia in the list of countries allowed to export to the EU in
1998 (Ibn Ichbil, 2010). Since then, the clam industry has established a new organizational structure which has contribut-
ÍNDICE
162
Environmental sustainability analysis of the clam (Ruditapes
decussatus, Linaeus 1758) fishery in Zaboussa production
area (southeastern Tunisia) using the MSC fisheries standard
ed to i) the creation of 17 production areas of bivalve molluscs,
each with its own sanitary and hygienic code (table 1) ii) the
implementation of a sanitary and hygienic monitoring network
and iii) achieving the approval for Depuration and Dispatch
Centres (DDC) for clams in accordance with national legislation and sanitary and hygienic requirements (Belkahia, 1997
et Nouaili, 2007).
Table 1. Delimitations of clam production areas in Tunisia (MARHP,
2004)
Lake of Tunis
(North)
B
Sanitary
number
T1
Chennal of Tunis
C
T2
Menzel Jemil
C
B1
Faroua
C
B2
North of Sfax
C
S1
Gargour
B
S2
Guetifa
C
S3
Production areas
ÍNDICE
Classification
163
Geographic data
Lake chikli
North shore of the lake
Rades port
TGM line-South Lake
300 m from dike, ONP
discharge, Wadi Nechrine
1km bridge, railway tracks
Tinja
South point of jazira
kébira
Draa Ben Zied
Haggouna
Pier Tabia
Sidi Freah
Ras Bourmada
Ras Barkallah
Rafik Nouaili, Carlos Montero-Castaño
& José Luis Sánchez-Lizaso
W.North Maltine
B
Sanitary
number
S4
W.South Maltine
B
S5
Skhira
B
S6
North Gabes
B
G1
South Gabes 1
B
G2
South Gabes 2
B
G3
North Mednine
B
M1
Boughrara lagoon
C
M2
North Djerba
B
M3
Lamsa
B
M4
Production areas
Classification
Geographic data
Wadi kébir
Ras Younga Nord
Ras Younga Sud
Ras Ferchatt
Chaara
Nadhour Bou-Saïd
Wadi Om Ghram
Tarf El Ma
Wadi Ashan
Wadi Om El Abayer
Wadi Om El Abayer
Sabkha Mezessar
Sabkha Mezessar
Cable teleg.(Tarf Jorf)
N (Câb teleg).O (Litt
Meden)
E (Litt Djerba).S (Borj
Kastill)
Câble Teleg.(Côté Djerba)
Houmet Souk
Lamsa et Jdaria
Fishers on foot are important players in the clam sector. They
are mostly women working in extreme weather conditions and
earning lower incomes than the minimum wage. Outside the
local community, this contribution by the women has no visibility and remains unacknowledged. Clam sector development
ÍNDICE
164
Environmental sustainability analysis of the clam (Ruditapes
decussatus, Linaeus 1758) fishery in Zaboussa production
area (southeastern Tunisia) using the MSC fisheries standard
and harvesting groups have been working since 2004 both
to organize fishing activities and primary marketing (Nouaili,
2013). These groups act as a link between fishers and exporters (Nouaili, 2007)
The General Directorate of Fisheries and Aquaculture is the
competent authority for the sector at national level. It is responsible for upgrading the industry and maintaining national
and international requirements. It determines the fishing seasons, issuing of fishing licenses and controlling the activity
from collection to product development. The General Directorate of Veterinary Services on the other hand is responsible for technical control (sanitary and hygiene) of seafood
products. It has the authority to control the import, export and
monitor the sanitary and hygienic characteristics of seafood
products at each step of the production chain (Nouaili, 2013).
A network monitors microbiological and animal health parameters as well as toxic phytoplankton, biotoxins and chemical
contaminants. Laboratories participating in this network belong to the Institute of Veterinary Research of Tunisia and
the National Institute of Science and Technology of the Sea
(Nouaili, 2007). Moreover, the depuration of clams is provided
by nearly twenty DDCs.
ÍNDICE
165
Rafik Nouaili, Carlos Montero-Castaño
& José Luis Sánchez-Lizaso
Before the development of the clam sector and the establishment of the harvesting groups, the clams’ primary marketing
was controlled and administrated by wholesalers who bought
clams from fishers and sold them to DDCs, hotels and restaurants. Nowadays, the creation of these harvesting groups,
one for each production area, constitutes a step towards a
greater accountability of the different participants of the production phases (Belkahia, 1997). Groups are the relay point
between fishers and buyers. It is thus mandatory to procure
clams exclusively from representatives of these groups that
provide product from a safe area. This is the first step to ensure traceability.
National clam production in Tunisia has experienced rather
irregular changes over time. Indeed, this production shows
strong annual variations explained by the temporary closures
of production areas due to sanitary conditions or market
trends. The evolution of the production during the last decade
has witnessed a relative stabilization around an average of
600 tonnes per year (Nouaili, 2007). This increase is primarily due to the improvement and stabilization of the sanitary
conditions of the production areas, the better control of these
sanitary conditions in the management areas and consolidation of operators in the sector (Ibn Ichbil, 2010 and Nouai-
ÍNDICE
166
Environmental sustainability analysis of the clam (Ruditapes
decussatus, Linaeus 1758) fishery in Zaboussa production
area (southeastern Tunisia) using the MSC fisheries standard
li, 2007). The European Union, and more in particular Italy,
remains the main destination for clam exports where more
than 75% of the entire Tunisian clam production is consumed
(Nouaili, 2007).
3. MSC certification scenario of the Tunisian clam
fishery
3.1. Methodology for scoring fisheries against the MSC
Principles and Criteria for Sustainable Fishing
The MSC was established in 1997 with the primary goals of
ensuring the sustainability of fish stocks globally, minimizing
environmental impacts, and promoting effective management
of fisheries (Martin et al., 2012). The organization sets sustainable fisheries standard based on three principles: (1) status of the target stock, (2) ecological and environmental impact of the fishery, and (3) management systems within which
the fishery operates. Under each of these principles are 31
‘performance indicators’ that address specific aspects. Fisheries must achieve a minimum score of 60 (out of a possible
100) for each performance indicator and an average score of
80 or above for each principle. For any performance indicator
scoring below 80 but above 60, the certifier must assign a
condition that will raise the score to 80 over a specified pe-
ÍNDICE
167
Rafik Nouaili, Carlos Montero-Castaño
& José Luis Sánchez-Lizaso
riod of time to a maximum of five years (MSC, 2002). This
scoring system is applied to measure the sustainability level
of a particular fishing activity defined by a “Unit of Certification (UoC)”. UoC is defined as “target stock(s) combined with
the fishing method/gear and practice (including vessel type/s)
pursuing that stock, and any fleets, or groups of vessels, or individual fishing operators that are covered by an MSC fishery
certificate (MSC c, 2015).”
In order to justify the scoring of each performance indicator,
we carried out an analysis of all the relevant documents such
as the statistics data, the research works but also the scientific publications. Moreover, surveys and semi-structured
interviews have been elaborated with the different stakeholders. This database allowed evaluating the performance of the
fishery in relation to the evaluation tree. The results presented
come from a pre-assessment analysis and therefore this is
just a previous exercise of a real MSC full assessment needed in order to become MSC certified.
3.2. Unit of Certification analysed and proposed
The Unit of Certification (UoC) analysed in this study and proposed for a potential MSC certification is the grooved carpet
ÍNDICE
168
Environmental sustainability analysis of the clam (Ruditapes
decussatus, Linaeus 1758) fishery in Zaboussa production
area (southeastern Tunisia) using the MSC fisheries standard
clam (R. decussatus) hand-raking fishery harvested on foot in
the production area of Zaboussa.
The eligible fishers whose fishing activity is analysed in this
UoC and therefore the beneficiaries of its potential certification are the Inter-Professional Group of Fishing products and
all members and participants from the group of the exploitation of the clam in Zaboussa area. This Unit of Certification is
defined as shown in Table 2.
Table 2. Details of unit of certification clam production area of
Zaboussa
Target species
Ruditapes decussata – Grooved carpet shell
Stock
Gulf of Gabes (Region of Sfax - production
area : S5)
Fishing area
It extends along the tidal zone (15 km) from the
south Oued Maltine to the port of Zaboussa so
that’s from Ras Younga South to Ras Ferichatt
including Kneiss island.
Fishing method
Harvest on foot: small hand rake practiced
mostly by women Authority fishery
management
The Ministry of Agriculture: District Fisheries
and Aquaculture - Commissioner Regional
for Development Agriculture of Sfax and
the Directorate-General for Fisheries and
Aquaculture.
ÍNDICE
169
Rafik Nouaili, Carlos Montero-Castaño
& José Luis Sánchez-Lizaso
3.3. Overview of the clam fishery carried out by the
“Unit of Certification”
The production area of Zaboussa is located near to El Hchichina town in the delegation of Ghraiba, about 70 km south of
the Sfax city, and it is part of the Gulf of Gabes. This zone is
characterized by Kneiss archipelago which consists of four islands, the most important being the island of Bessila covering
approximately 480 ha. The zone holds the sanitary code “S5”
corresponding to the coastal area between the Oued Maltine
and port Zaboussa (Fig. 1). It is remarkable gravitational tides
in the Gulf of Gabes, to 1.4m in height between high and low
tide.
Reasons for choosing this area include particularly that (i) it
has benefited from activities of the FAO project “Strengthening the role of women in the shellfish clam industry in Tunisia”
and (ii) it contributes significantly to national production with
usually more than 40 percent of total production.
Currently, nearly 400 persons were involved in this activity in
the study area, the majority of them from Maaouma, Khaoula and Hechichina communities. This area is served by two
landing sites. This population is young, mostly women, with
an average age of 30 years. The activity is learnt on the job
across generations (Nouaili, 2007).
ÍNDICE
170
Environmental sustainability analysis of the clam (Ruditapes
decussatus, Linaeus 1758) fishery in Zaboussa production
area (southeastern Tunisia) using the MSC fisheries standard
Figure 1. Delimitations of Zaboussa clam production area “S5”.
These fisherwomen are poor and marginalized and tend to
have low educational qualifications and are registered in the
clam development and harvesting group of EZDIHAR, an entity created in 2004 whose wholesalers are exclusively men.
Many of the local fisherwomen believe that this entity has not
improved their income or working conditions (Nouaili, 2013).
As soon as the tide is low, collectors make their way to the
production areas. They are scattered along the foreshore
ÍNDICE
171
Rafik Nouaili, Carlos Montero-Castaño
& José Luis Sánchez-Lizaso
equipped with a sickle and container. The duration of the fishery is dependent on the duration and characteristics of the
tide (Belkahia, 1997).
The shellfish picker´s activity is subject to a special permit
issued by the competent authority: “Commission for regional agricultural development”. Under the regulations, fishing
clams is prohibited during the period from 15th May to 30th
September each year. Administrative supervision aims at ensuring compliance with fisheries regulations including minimum catch size (diameter of 3.5 cm) and the origin of product
(Mekni, 2011).
Indeed, the primary marketing of clam always takes place
at the landing sites that have been officially designated by
regional authorities and where sorting and weighing takes
place under the supervision of representatives of the harvesting groups. The transaction of sales brings together “Fishery Guardians”, representatives of Depuration and Dispatch
Centers (DDC) and representatives of harvesting groups. Besides,a transport document, the first link of traceability, is issued exclusively by Fishery Guardians to the representatives
of Depuration and Dispatch Centers (DDC) (Nouaili, 2007).
DDC also must comply with the requirements of the identification marking and labelling by which traceability is established
ÍNDICE
172
Environmental sustainability analysis of the clam (Ruditapes
decussatus, Linaeus 1758) fishery in Zaboussa production
area (southeastern Tunisia) using the MSC fisheries standard
from primary production to the stage of the local market or
export.
In Tunisia, research on stock assessment of bivalve molluscs
is ad hoc and sporadic (Nouaili, 2013). The results of a study
to evaluate stocks of bivalve species in Tunisian coastal areas
undertaken by the National Institute for Marine Science and
Technology in the framework of the project «Stock Assessment of Ecosystem Benthic Resources» during 2002-2005
revealed a large potential for commercially valuable shellfish
exploitation including the clam species Ruditapes decussatus
whose concentrations can reach more than 400 specimens
per m2 (Zamouri-Langar et al., 2001).
Using data from eleven clam fishing seasons (2002-2013) in
the production area S5, it was possible to apply a Schaefer’s
model which concluded that MSY is about 200 tonnes for a
fishing effort of 65,000 fishermen*days of actual work (Fig.
2). The stock of clam in S5 area seems moderately exploited
(Nouaili, 2013).
ÍNDICE
173
Rafik Nouaili, Carlos Montero-Castaño
& José Luis Sánchez-Lizaso
Figure 2: CPUE in Kg /(fisherman*day) in front of effort in
fisherman*day for the Zaboussa clam fishery (2002-2013) to estimate
parameter of the Schaefer model.
4. Analysis results
With regard to the Principles and Criteria of the MSC, for
the case of Zaboussa clam fishery, the three Principles have
achieved a scoring above 80 (green colour) and no performance indicator achieved less than 60, which is the minimum
ÍNDICE
174
Environmental sustainability analysis of the clam (Ruditapes
decussatus, Linaeus 1758) fishery in Zaboussa production
area (southeastern Tunisia) using the MSC fisheries standard
level required for certification (table 3). It is therefore determined that the Zaboussa clam fishery could be potentially
considered sustainable, and therefore certifiable according
to the Marine Stewardship Council Principles and Criteria for
Sustainable Fisheries. The chosen basis is therefore eligible
for certification provided that a plan is established to satisfy
four conditions having as principal themes the research and
investigation of the target species and the supervision and
monitoring of the fishing activity.
The requirements for Principle 1 are fulfilled through the stock
status indicator and the existence of a precautionary harvest
strategy. Appropriate measures were taken in order to preserve the resource and to allow its sustained use such as (i)
closure of fishery during the period from May 15th to September 30th of each year (ii) obligation to keep a fishery license
renewable annually and issued by the competent authority,
fixing of the size of the first capture to 35 mm and ban on the
use of any fishing gear other than the sickle (Nouaili, 2013).
Research is carried out to identify valuable information such
as abundance, stock distribution and age structure. An integrated management plan for this region was prepared since
2008.
ÍNDICE
175
Rafik Nouaili, Carlos Montero-Castaño
& José Luis Sánchez-Lizaso
Table 3. Score at Performance Indicator level
Principle
Wt
(L1)
Component
Wt
(L2)
PI
No.
Performance Indicator (PI)
One
1
Outcome
0.5
1.1.1
Stock status
1.1.2
Reference points
1.1.3
Stock rebuilding
1.2.1
Harvest strategy
1.2.2
Harvest control rules & tools
1.2.3
Information & monitoring
1.2.4
Assessment of stock status
2.1.1
Outcome
2.1.2
Management
2.1.3
Information
2.2.1
Outcome
2.2.2
Management
2.2.3
Information
2.3.1
Outcome
2.3.2
Management
2.3.3
Information
2.4.1
Outcome
2.4.2
Management
2.4.3
Information
2.5.1
Outcome
2.5.2
Management
2.5.3
Information
3.1.1
Legal & customary framework
3.1.2
Consultation, roles & responsibilities
3.1.3
Long term objectives
3.1.4
Incentives for sustainable fishing
3.2.1
Fishery specific objectives
3.2.2
Decision making processes
3.2.3
Compliance & enforcement
3.2.4
Research plan
3.2.5
Management performance evaluation
Management
Two
1
Retained
species
Bycatch
species
ETP species
Habitats
Ecosystem
Three
1
Governance
and policy
Fishery
specific
management
system
0.5
0.2
0.2
0.2
0.2
0.2
0.5
0.5
Not considered
Key colour
scoring
ÍNDICE
176
Score
Above 80
Between 60 and 80
Environmental sustainability analysis of the clam (Ruditapes
decussatus, Linaeus 1758) fishery in Zaboussa production
area (southeastern Tunisia) using the MSC fisheries standard
Regarding the requirements for Principle 2, they are met
through the focused use of resource. Indeed, Tunisian fishing by foot exclusively target clams (Ruditapes decussatus)
and consequently the fishery does not pose a risk of serious
or irreversible harm to other retained species and does not
hinder recovery of depleted retained species. Clam fishing by
food using a sickle is a highly selective fishing method and
has no major side effects on the bycatch populations or on the
endangered, threatened and protected (ETP) species. The
study of Kneiss management plan explored all potential impacts on the ecosystem within that area and none were given
to shellfish pickers’ activity (APAL, 2008).
Lastly, regarding the Principle 3, the requirements are fulfilled through an efficient management system within an appropriate legal framework in accordance with MSC Principles
1 and 2. The follow-up of clams sector and all measures initiated were done by steering national and regional committees
comprising all stakeholders and actors (including research, and administration) in order to ensure their views and a participatory management (Nouaili, 2013). Four performance indicators (PI) were noted between 60 and
80 (yellow colour in table 3) and resulted in specific conditions. For these PI, conditions must be established to enable
ÍNDICE
177
Rafik Nouaili, Carlos Montero-Castaño
& José Luis Sánchez-Lizaso
the beneficiaries to improve the performance of the fishery.
In the eventual case of proceeding with a certification, the
beneficiaries shall develop an Action Plan to satisfy these four
conditions.
The competent authority should build on the significant accomplishments and recommendations achieved from the research program to develop an appropriate strategy for the
management and development of the resource. This strategy
will therefore respond to the state of the stock and the elements of the harvest strategy. Furthermore, they ought to
work together towards achieving management objectives reflected in the target and limit reference points (Nouaili, 2013).
5. Conclusion
The Zaboussa clam fishery can be a good candidate to be the
first MSC certified fishery in northern Africa and Mediterranean sea due to the organization of the fishermen around a professional structure, the highly selective nature of the fishing
technique, the interest in the ecological and environmental
heritage, and the existence of a fairly complete organizational
and institutional base to ensure a participatory approach in
the planning and management of the sector. However, on the
other hand, the marginal and precarious situation of the fish-
ÍNDICE
178
Environmental sustainability analysis of the clam (Ruditapes
decussatus, Linaeus 1758) fishery in Zaboussa production
area (southeastern Tunisia) using the MSC fisheries standard
ers’ population and the relatively early stage of the Inter-Professional group can be seen as a real obstacle to the potential
certification.
In conclusion, the MSC certification project of the coastal artisanal fishery of Tunisian clams is relatively ambitious considering the shellfish picker´s precarious situation. Moreover, obtaining MSC certification would be a consecration of Tunisian
efforts in management and development of fisheries. This will
also call for greater coordination between all the stakeholders including research for the stock assessment component
of clam’s fishery, administration and extension for customized professional and technical support and finally fishermen
group, principal player, for the provision and endorsement of
the concept of MSC certification.
Acknowledgements
The authors are grateful to all interviewees for sharing their
experiences and challenges. The authors would also like
to thank the staff of Mediterranean Agronomic Institute of
Zaragoza (IAMZ) especially Professor Bernardo Basurco as
well as lecturers and colleagues from International Master on
Sustainable Fisheries Management.
ÍNDICE
179
Rafik Nouaili, Carlos Montero-Castaño
& José Luis Sánchez-Lizaso
References
APAL, 2008. Agence de Protection et d’Aménagement du littoral.
Etude sur l’élaboration du plan de gestion des îles Keneis et préparation de sa mise en œuvre, Agriconsulting-Azimut-Shoreline, Rapport première phase, p107.
BELKAHIA, R. 1997. Support for the sector of fishing clams by foot.
Tunis: Centre for Research, Studies, Documentation and Information on Women. 123p.
FAO, 2014. Report sofia State of the World’s Fisheries and Aquaculture, Food and Agriculture Organization of the United Nations,
Roma. 253pp.
FROESE, R AND PROELSS, A. 2012. Evaluation and legal assessment of certified seafood. Mar. Policy, Available at :http://dx.doi.
org/10.1016/j.marpol.2012.03.017.
IBN ICHBIL, A. 2010. Contribution to study of clam in Zaboussa. Master Production and Aquatic Ecosystem. Tunisia: National Agronomy Institute- Tunis. 73 p.
ICES, 1997. Report of the Study Group on the Precautionary Approach
to Fisheries Management. ICES CM /Assess 7, 41 pp.
KIRBY, D.S., VISSER, C. AND HANICH, Q. 2014. Assessment of
eco-labelling schemes for Pacific tuna fisheries. Mar Policy, 43, pp.
132–142
MARHP, 2004. Ministère de l’Agriculture, des Ressources Hydrauliques
et de la Pêche. Note de service n°100/2759 du 26 novembre 2004
établissant un programme de contrôle de santé publique et de surveillance de la production des mollusques bivalves destinés à l’ex-
ÍNDICE
180
Environmental sustainability analysis of the clam (Ruditapes
decussatus, Linaeus 1758) fishery in Zaboussa production
area (southeastern Tunisia) using the MSC fisheries standard
portation vers les pays de l’Union Européenne. In Guide National
de Bonnes Pratiques d’Hygiène pour la collecte et le transport des
mollusques bivalves, 56, 32 p.
MARTIN, S.H., CAMBRIDGE, T.A., GRIEVE, C., NIMMO, F.M AND
AGNEW, D.J. 2012. An evaluation of environmental changes within
fisheries involved in the Marine Stewardship Council certification
scheme. Rev Fish Sci, 20, pp. 61–69.
MEKNI, H., 2011. Vers une meilleure exploitation de la zone de collecte de la palourde par le groupement de développement de
pêche). Rapport de consultation TCP/TU/3203 Renforcement du
rôle de la femme pêcheur à pied de la palourde dans la région de
Zaboussa, Gouvernorat de Sfax, p 103.
MSC, 2010. Marine Stewardship Council. Principles and Criteria for
Sustainable Fishing. London: MSC; 8 pp. Available at https://
www.msc.org/documents/scheme-documents/msc-standards/
MSC_environmental_standard_for_sustainable_fishing.pdf
MSC (a), 2015. Marine Stewardship Council. Annual Report 2013-14;
25 pp. Available at: https://www.msc.org/documents/msc-brochures/annual-report-archive/annual-report-2013-14-english
Accessed February 2, 2015.
MSC (b), 2015. Track a fisher. http://www.msc.org/track-a-fishery/
fisheries-in-the-program/certified/north-east-atlantic/bury-inlet-cockle (accessed 16/01/2015).
MSC (c), 2015. Marine Stewardship Council. MSC-MSCI Vocabulary. V1.1, 20th February 2015. Available at https://www.msc.org/
documents/scheme-documents/msc-msci-vocabulary.
ÍNDICE
181
Rafik Nouaili, Carlos Montero-Castaño
& José Luis Sánchez-Lizaso
NOUAILI, R. 2007. Contribution to study of the die and practice fishing
clam in Tunisia. Master Production and Aquatic Ecosystem. Tunisia: National Agronomy Institute- Tunis. 2007. 146 p.
NOUAILI, R. 2013. Study on the feasibility of MSC certification of
clam fishery in Tunisia. International Master on sustainable fisheries management. Spain: University of Alicante (UA) and International and Centre for Advanced Mediterranean Agronomic Studies (CIHEAM). 2013. Available at: http://rua.ua.es/dspace/bitstream/10045/36119/1/Tesis%20m%C3%A1ster%20Rafik%20
Nouaili.pdf.
PAULY, D., CHRISTENSEN, V., GUÉNETTE, S., PITCHER, T.J,
SUMAILA, U.R, WALTERS, C.J, WATSON R AND ZELLER,
D. 2002. Towards sustainability in world fisheries. Nature 418:689695.
PÉREZ-RAMÌREZ M, LLUCH-COTA S, LASTA M., 2012. MSC
certification in Argentina: Stakeholders’ perceptions and lessons
learned. Mar. Policy 2012; 36: 1182–1187.
ZAMOURI-LANGAR, N. 2010. Modeling and analysis of operating
parameters of bivalve stocks Ruditapes decussatus in tunisian
coastal, doctoral thesis, National Agronomy Institute- Tunis. 234p.
ZAMOURI-LANGAR, N., CHOUBA L. AND EL ABED, A. 2001. Benthic Macrofauna in three Ports of Tunisia : Impacts of Pollution. Proceedings of the fifth international conference on the Mediterranean
coastal environment. MEDCOAST : 641-650p.
ÍNDICE
182
DOI: 10.14198/MDTRRA2015.ESP.09
Ressources halieutiques potentielles et
propositions d’adaptation aux variabilités
climatiques dans l’extrême Sud de Madagascar
Mahatante Tsimanaoraty Paubert1,
Fanazava Rijasoa2 & Mara Edouard Remanevy3
IH.SM – Institut Halieutique et des Sciences Marines, BP : 141,
route du Port Mahavatse, Toliara (601) – MADAGASCAR
( : 00 261 34 02 41515 / [email protected])
2
Centre de Surveillance des Pêches/Madagascar et Ingénieur
Halieute de l’IH.SM, Toliara (601) – MADAGASCAR
( : 00 261 32 07 038 71 / [email protected])
3
Ecole Doctorale de l’IH.SM, Université de Toliara, Avenue Monja
Jaona, Toliara (601) – MADAGASCAR
( : 00 261 34 02 431 21 / [email protected])
1
Abstract The deep southern Madagascar is very reputed by the succession of famines – kere, that lead the death of people and
ÍNDICE
183
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
livestock in that region. Those famines are due to repetitive
droughts that occur periodically caused by climate variability
in that area.
We have conducted socio-economic assessment within three
fishermen villages to better understand the life style of the
southern coastal community. Then, traditional fishing survey
has been undertaken to better understand and identify the
characteristics of fishing activities and identify the main potential resources. Thus, a simple assessment of the climate
variability was directed to well apprehend the climate risks
and to have an overview on the community vulnerability.
Socio-economic assessment results shown that fishing activity plays an important role in the southern coastal community
livelihood and its development will contribute a lot to improve
food security. The fishing survey results let us to conclude
that the southern Madagascar still has lots of resources that
are less exploited – except lobsters and shellfish. Lobsters
and big pelagic and demersal fishes constitute the potential
halieutic resources. The main climate risk is the drought –
since 1896 till 2014, 14 droughts episodes have occurred and
caused 14 kere.
For a better climate variability adaptation, the development of
the fishing activity will enhance fishermen adaptation capacity
ÍNDICE
184
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
and resilience and improve the food security in whole. A deep
assessment of the southern Madagascar upwelling system
and the Indian Ocean Dipole (IOD) is recommended to well
apprehend their characteristics as they are linked to the upcoming of drought.
Keywords: deep southern Madagascar, socio-economic survey, traditional fishing activity, drought, climate variability, adaptation, food security.
Résumé
L’extrême sud de Madagascar est très réputé par la succession des famines – kere, qui a provoqué des pertes des vies
humaines et des bétails dans cette région. Ces famines sont
causées par les sécheresses répétitives qui se produisent périodiquement à cause des variabilités climatiques dans cette
partie de l’Ile.
Nous avons mené une étude socio-économique auprès des
trois villages de pêcheurs pour mieux comprendre le style
de vie des communautés du littoral sud malagasy. En outre,
des activités de suivi de pêche traditionnelle ont été entreprises afin de mieux comprendre et d’identifier les caractéristiques des activités de pêche et d’identifier les principales
ressources halieutiques potentielles. Ainsi, une étude simple
ÍNDICE
185
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
des variabilités climatiques a été effectuée pour mieux appréhender les risques climatiques et pour avoir un aperçu sur la
vulnérabilité des communautés.
Les résultats de l’étude socio-économique ont montré que la
pêche joue un rôle important dans la subsistance des communautés du littoral sud et son développement contribuera
énormément à l’amélioration de la sécurité alimentaire dans
la région. Les résultats de suivis de pêche nous ont permis de
conclure que le sud de Madagascar dispose encore d’énormes
ressources qui sont sous-exploitées – sauf la langouste et
le coquillage. La langouste et les gros poissons pélagiques
et démersaux constituent les ressources halieutiques potentielles. Le principal risque climatique est la sécheresse – depuis 1896 jusqu’en 2014, 14 épisodes de sécheresse se sont
produites et ont entraîné 14 kere.
Pour une meilleure adaptation aux variabilités climatiques, le
développement des activités de pêche renforcera la capacité d’adaptation et de résilience des pêcheurs et améliora la
sécurité alimentaire en général. Une étude approfondie de
l’upwelling sud malagasy et le dipôle de l’océan indien (IOD)
est également recommandée pour mieux comprendre leurs
caractéristiques car ces phénomènes sont liés à la survenue
de sécheresse dans le sud.
ÍNDICE
186
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
Mots clés : extrême sud de Madagascar, étude socio-économique, activité de pêche traditionnelle, sécheresse, variabilité
climatique, adaptation, sécurité alimentaire.
1. Introduction
S
ituée dans l’Extrême Sud de Madagascar (Decary,
1933, Pavin de Lafarge, 1997, PRD, 2005, Razanadrainy, 2010, Rajaonarison, 2015), l’Androy (1) se
trouve entre la rivière Menarandra et le fleuve Mandrare (Defoort, 1913, Decary, 1930, Battistini, 1964, Heurtebize, 1986).
C’est une zone semi-aride (Mara, 1990, Arivelo, 2009) avec
une déficience en eau de 9 à 11 mois (Arivelo, 2009, Raholijao, 2009). L’indice d’aridité est de 9,4 à Ambovombe Androy,
6,2 à Beloha Androy, 5,8 à Faux Cap et 7,3 à Tsihombe contre
24 à Fort-Dauphin (Diverge, 1949 in Battistini, 1964), alors,
quel que soit la classification adoptée et le critère employé, le
Sud reste comme étant la région la plus sèche de Madagascar (Doncques, 1975).
Décrite comme étant la Région la plus pauvre de la Grande Ile
(Morlat, 2008) et placée parmi les secteurs les plus défavorisés de Madagascar (Lebigre et Reaud-Thomas, 1995), elle
est caractérisée par la présence d’une sécheresse régulière
ÍNDICE
187
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
qui est à l’origine à la fois des séries de Kere qui y règnent et
l’émigration vers le Nord de sa population.
Le littoral de l’Androy mesure environ 250 km (PRD, 2005) et
est caractérisé par une alternance des dunes et des fourrés
épineux qui sont à la merci du vent dominant « tiomena (2) »,
l’Alizé qui souffle en permanence toute l’année (Mara, 1990),
contribuant à sa géomorphologie. Devant ce littoral se prolonge le large plateau continental – 38 miles en face de Cap
Sainte-Marie (Berthois et al, 1964), source de la haute potentialité halieutique et économique de la côte sud malgache.
De plus, l’année 2010, l’Expédition Atimo vata’e a rapporté
l’importance de l’endémisme régional qui concourt à faire du
«Grand Sud» une région biogéographiquement séparée du
reste de Madagascar (Tianarisoa, 2010).
La richesse en ressources halieutiques du Sud trouve aussi son origine dans l’existence dans cette région d’une zone
d’upwelling (3) qui constitue les principales sources d’enrichissement trophique du milieu marin (Bemiasa, 2009 et
Voldsund, 2011). Cependant, si la pêche constitue l’activité
principale de la majorité de la population littorale (Razanoelisoa, 2008), dans l’Androy, elle se pratique d’une manière
très timide; malgré la classification de cette activité comme
étant parmi les plus vieilles du monde (Rejela, 1993). A part
ÍNDICE
188
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
quelques pionniers de pêcheurs Ntandroy, c’est surtout l’arrivée des pêcheurs de Fort-dauphin, Androka, Fenambosa,
Anakao et Toliara, depuis les années 80, qui a incité petit à
petit les Ntandroy à s’intéresser à la pêche.
Par ailleurs, depuis plusieurs décennies, la région Androy
est affectée par des variabilités climatiques. Tovondrafale, en
2015, a noté que le sud était déjà sec avant l’implantation
des humains à Madagascar vers l’an 500 AD (Lovei, 2013),
notamment l’arrivée du premier peuplement bantous dans
l’Androy – cas d’Antalaky, vallée de Manambovo – sud de
Madagascar, qui selon Heurtebize et Verin, 1974 vers XIè et
XIIè siècle mais 840±80 BP selon Pearson et al. (1996). Cette
situation constitue un facteur limitant pour la production agricole et met ladite région parmi celles qui sont vulnérables au
changement climatique (Pana, 2006 et Mahatante, 2010). Par
conséquent, d’une part, la capacité d’adaptation de la population aux aléas climatiques est faible et, d’autre part, les ressources marines sont moins exploitées et très peu étudiées.
La présente étude a pour objectifs de mettre en exergue les caractéristiques socio-économiques des communautés du littoral
de l’Androy (i), d’identifier et d’étudier les ressources halieutiques potentielles (ii) et enfin de proposer des mesures d’adaptation aux variabilités climatiques (iii), après avoir déterminé
ÍNDICE
189
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
les principaux enjeux environnementaux ainsi que les risques
climatiques auxquels font face les communautés étudiées.
2. Méthodologie
Pour mener l’étude, trois sites de débarquement ont été choisis le long du littoral Androy, à savoir, Ezanavo – à l’est, Kotoala – au milieu, et Lavanono – à l’ouest; sites situés entre
l’embouchure du fleuve Mandrare à l’Est, et celle du fleuve
Menarandra, à l’Ouest (fig. 1).
Figure 1 : Carte des sites de débarquement étudiés
ÍNDICE
190
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
Tableau 1 : Monographie simple des sites choisis
Village
Ezanavo
Kotoala
Lavanono
Population
350
500
760
Ménages
80
110
180
Pêcheurs (4)
120
190
330
Pirogues
30 à 35
15 à 20
45 à 50
(Source : enquêtes auprès des Chefs Fokontany, 2014)
Il est à noter que ces sites d’études sont habités majoritairement par le groupe ethnique Ntandroy – un ensemble de
communautés originellement agro-éleveurs.
Le tableau 1 récapitule une simple monographie effectuée
auprès des Chef Fokontany des sites choisis. 2.1- Approches
adoptées pour la collecte des données
Une étude socio-économique a été menée en 2012 auprès
des 3 gros villages (5) de pêcheurs utilisant les trois sites de
débarquement choisis (fig.1) pour collecter les données socio-économiques. L’interview des pêcheurs s’est passée au
niveau des sites de débarquement et dans leurs ménages
de manière individuelle et aléatoire. Au total, pour ces trois
villages, 180/640 pêcheurs ont été interviewés, soit 28%.
Pour ce faire, la technique d’enquête développée par Cinner
et al. en 2008 et MacClanahan et al. en 2014, en utilisant
un questionnaire préétabli a été utilisé permettant d’obtenir
plusieurs informations telles que les noms des pêcheurs, leur
ÍNDICE
191
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
âge, leur origine, leurs types d’activités, leurs dépenses mensuelles, leur résilience sociale, leur volonté d’adhérer dans
des associations communautaires et agricoles ainsi que leur
volonté de participer dans une prise de décision quelconque
au sein de leurs communautés et autres.
Quant aux données de pêche, des suivis de 15 mois (d’octobre 2011 en décembre 2012) ont été effectués auprès des
trois sites de débarquement choisis. Pendant cette période, 2
à 3 suivis par semaine, de manière systématique, ont été effectués comme il a été adopté par Razanoelisoa, 2008, quand
le temps nous les a permis. Les données obtenues lors des
enquêtes de 10 à 15 pirogues, selon la méthode qui a été
utilisée par Mahatante, 2008 et Ramahatratra, 2014, soit 20 à
50% du nombre total des pirogues sorties, comprennent des
séries de données des trois saisons caractérisant l’Extrême
Sud (Asara, Asotry et Faosa) (6).
Pour terminer, concernant les données climatiques et sur les
famines, des séries de données ont été obtenues auprès du
Service de Recherche de la Direction Générale de la Météorologie de Madagascar (DGM) et du Centre National Antiacridien (CNA) d’Ambovombe afin de bien mettre en évidence les
variabilités climatiques interannuelles et intra annuelles dans
le Sud. Ensuite, des documents ont été consultés pour acqué-
ÍNDICE
192
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
rir des données sur les famines qui se sont produites dans le
sud ainsi que leurs caractéristiques. Enfin, nous avons mené
des documentations sur les années de survenue d’El Nino
dans le pacifique équatorial oriental.
2.2. Traitement et analyse des données Pour chacun des types de données, des bases de données
sur Excel ont été créées. Concernant les données socio-économiques, les variables étudiées ont été codées afin de faciliter leurs traitements. Les moyennes, totaux ou autres traitements statistiques ont été obtenus en utilisant Excel. Avec
les données obtenues lors des enquêtes, une régression
en fonction de l’âge, la taille du ménage, le genre, le niveau
d’éducation ainsi que la religion a été réalisée. Ensuite, pour
éviter des problèmes économétriques et pour la fiabilité des
résultats, les données ont été arrangées sous forme de logarithme naturel. Pour ce faire, l’expression suivante a été
établie:
Log(DépJournalière) = c + a log(âge) + b log(taille du
ménage) + d log(sexe) + e log(niveau éducation) +
f log(religion) + ἐ
ἐ : représente les erreurs possibles qui n’ont pas été prises en
considération dans l’établissement du model. Pour renforcer
ÍNDICE
193
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
la fiabilité des résultats, une régression de type Robuste a été
réalisée sur STATA.13 – un logiciel statistique.
Quant aux données de pêche, entre autres, tels qu’adoptés
par Mahatante, 2008, les types d’embarcation existants, les
différents engins de pêche utilisés avec les techniques de
pêche, les principales familles capturées avec chacun de ces
engins de pêche ont été inventoriés. Ensuite, selon Razanoelisoa, 2008, les trois principaux indicateurs des activités de
pêche, à savoir, l’effort de pêche, la capture par unité d’effort (CPUE) et la production par type d’engin ont été évalués.
Pour ce faire, soit :
Pi : nombre de pêcheurs par pirogue sortie échantillonnée
Si : nombre de pirogues sorties échantillonnés ou nombre de
sorties échantillonnées
Ti : la durée d’une sortie pour une activité de pêche
Fj : l’effort de pêche moyen journalier par sortie
Fj =
∑Pi/∑Si
∑Ti/∑Si
(Unité Fj : pêcheurs/pirogue/sortie)
Quant aux évaluations des captures, les formules suivantes
ont été adoptées afin d’estimer les captures journalières. Soit
CPUEj la capture moyenne journalière par unité d’effort, Gi le
ÍNDICE
194
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
poids (kg) de la capture d’une pirogue échantillonnée pour
tous les engins utilisés pendant le jour d’enquête:
CPUEj = ∑Gi/Fj
L’effort de pêche moyen journalier de chacun des trois sites a
été évalué en multipliant le nombre de pêcheurs par pirogue
par sortie par le nombre total de pirogues.
Pour les deux paramètres (efforts de pêche et captures),
Anova a été employée pour la comparaison de plusieurs
moyennes. Pour ce faire, les moyennes des efforts de pêche
journaliers et mensuels et celles des captures prélevées indépendamment dans les trois sites étudiés ont été comparées en utilisant l’analyse de variances de Fisher et le test de
Pearson sur Statistica. Ces comparaisons ont été appliquées
dans le but de voir si les efforts de pêche et les CPUE sont
les mêmes dans tous les sites. Les ressources halieutiques
potentielles ont été identifiées en établissant les cinq critères
suivants: ressources encore en abondance, haute valeur
marchande, appréciées par les consommateurs, pas protégées et cibles des pêcheurs.
Pour les données climatiques, les précipitations moyennes
annuelles ont été analysées. Vu l’absence de données dans
la zone, nous n’avons pas pu étudier tous les trois paramètres
ÍNDICE
195
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
qui influenceraient et limitent les activités de pêche, à savoir,
les précipitations, la température, et le vent (Mara, 1990), notamment les deux derniers paramètres. Ensuite, nous avons
observé les variabilités interannuelles des précipitations depuis 1953, pour le cas d’Ambovombe Androy, en utilisant une
analyse temporelle pour identifier les variations (tendances,
cycle saisonnier). Enfin, ces données ont été comparées avec
les périodes de survenue des « kere » dans le sud ainsi que
les périodes d’occurrences du phénomène d’El Nino dans le
pacifique pour voir s’il a des liens entre ces phénomènes.
3. Résultats
3.1. Caractéristiques des ménages de pêcheurs dans
l’Androy
L’étude socio-économique menée auprès des trois villages
des pêcheurs nous a permis de mieux appréhender les caractéristiques des ménages. La fig.2 dans la liste des figures
nous montre le niveau d’éducation des communautés étudiées.
A Ezanavo et Kotoala, respectivement, 73% et 53% de la population adulte sont illettrées contre 16% à Lavanono (fig.2).
Comme nous avons mené les enquêtes auprès des adultes,
ÍNDICE
196
NIVEAU D'ÉDUCATION EN %
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
80,00
60,00
40,00
20,00
0,00
Illetrés
Ezanavo
Niveau primaire
Kotoala
Niveau secondaire
Lavanono
Niveau second cycle
Niveau Universitaire
5,9
6,72
7,32
étudiées (%)
6,02
7,72
FigureFigure
2: Répartition
du niveau d’éducation
desd’éducation
communautés des
étudiées
(%)
2 : Répartition
du niveau
communautés
les résultats varient en fonction de l’ancienneté des infrastructures scolaires dans les villages étudiés.
EZANAVO
KOTOALA
LAVANONO
LITTORAL ANDROY
MADAGASCAR
NIVEAU D'ÉDUCATION EN %
Les caractéristiques des tailles de ménage sont présentées
Figure 3: Répartition des moyennes des tailles de ménages dans les communautés
dans la fig.3. Les moyennes des tailles de ménage sont généétudiées (personnes ralement un peu élevées avec une valeur maximale de 7,72
80,00
personnes/ménage
pour Ezanavo, 6,02 personnes/ménage à
60,00
40,00 et 7,32 personnes/ménages à Lavanono (fig.3).
Kotoala
20,00
0,00
Concernant les
activités socio-économiques,
la répartition
Ezanavo
Kotoala
Lavanono
Niveau primaire
Niveau secondaire
Niveau Universitaire
desIlletrés
activités
principales
dans lesNiveau second cycle
communautés
étudiées
EZANAVO
KOTOALA
LAVANONO
LITTORAL ANDROY
5,9
6,72
7,32
6,02
7,72
Figure 2: Répartition du niveau d’éducation des communautés étudiées (%)
MADAGASCAR
Figure
3: Répartition
des moyennes
des tailles de ménages
dansde
les ménages
communautés
Figure
3 : Répartition
des moyennes
des tailles
dans les
étudiées (personnes
communautés étudiées (personnes/ménage)
ÍNDICE
197
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
32%
Lavanono
42%
26%
10%
Kotoala
27%
63%
3%
Ezanavo
63%
33%
Autre
Pêche
Agriculture
Figure
4: Répartition
des activités
les communautés
(%)
Figure
4 : Répartition
desprincipales
activitésdans
principales
dans étudiées
les communautés
6%
Lavanono
étudiées (%)
2%
26%
6%
sont présentées sur la fig.4.
Bien que la42%pêche ne soit pas en10%
core très développée
sur le littoral de la région Androy, selon
17%
Kotoala
7%
34%
32%
ces résultats, à l’exception de Kotoala
(27%), elle constitue
32%
5%
42%
Lavanono
la
principale5% activité
des communautés
étudiées dont 63% à
26%
7%
Ezanavo
18%
10%
65%
27%
Kotoala
Ezanavo
et 42% à Lavanono (fig.4). La fig.5 montre la 63%
réparRien
Commerce
Elevage
Pêche
Agriculture
3% Autre
63%
tition
des activités secondaires des
communautés étudiées.
Ezanavo
33%
Figure
5: Répartition
des activités
secondaires dans
les communautés
étudiées
(%)
D’après
la fig.5,
constitue
l’activité
secondaire
Autre l’agriculturePêche
Agriculture
3,30 18%
1,10 6%
Lavanono
1,25
2
1,59 Figure 4: Répartition des activités principales dans les communautés étudiées (%)
2%
18%
10%
KOTOALA
EZANAVO
Kotoala
17%
26%
6%
42%
LAVANONO
7%
SPMN
SPMI
34%
32%
Figure 6: Moyennes des dépenses ménagères journalières
des communautés étudiées
(MDMJ). SPMN: seuil 5%
Ezanavo
5%
Rien
7%
18%
Autre
65%
Commerce
Elevage
Pêche
Agriculture
Figure 5 des
: Répartition
des activités
dans (%)
les
Figure 5: Répartition
activités secondaires
dans les secondaires
communautés étudiées
EZANAVO
2
KOTOALA
198
LAVANONO
1,25
ÍNDICE
1,10 1,59 3,30 communautés étudiées (%)
SPMN
SPMI
10%
17%
Kotoala
7%
32%
34%
5%
Ressources
halieutiques potentielles et propositions
7%
5%
18%
d’adaptation aux variabilités
climatiques dans l’extrême Sud
65%
de
Madagascar
Rien
Autre
Commerce
Elevage
Pêche
Agriculture
Ezanavo
EZANAVO
2
1,25
1,10 1,59 3,30 Figure 5: Répartition des activités secondaires dans les communautés étudiées (%)
KOTOALA
LAVANONO
SPMN
SPMI
FigureFigure
6: Moyennes
des dépensesdes
ménagères
journalières
des communautés
étudiéesdes
6 : Moyennes
dépenses
ménagères
journalières
(MDMJ).
SPMN:
seuil
communautés étudiées (MDMJ). SPMN: seuil de pauvreté monétaire
national et SPMI: seuil de pauvreté monétaire international (en USD).
la plus pratiquée des communautés étudiées – 65% pour
Ezanavo, 42% pour Lavanono et 32% pour Kotoala.
La fig.6 présente les moyennes des dépenses ménagères
journalières en USD des communautés dans les trois sites
étudiés. D’après la fig.6, Kotoala est le village le plus pauvre
parmi les trois qui sont ici étudiés car la MDMJ (Moyenne des
Dépenses Ménagères Journalières) est de 1,10 USD qui est
inférieure à la fois aux SPMN (Seuil de Pauvreté Monétaire
National) et SPMI (Seuil de Pauvreté Monétaire International), tandis qu’Ezanavo, pour une MDMJ de 1,59 USD, ne
pourrait pas être classé comme étant pauvre si l’on se réfère au SPMN, il l’est par rapport au SPMI. La MDMJ (3,30
USD) de Lavanono est supérieure par rapport au SPMN et
même au SPMI. Ce village ne pourrait donc pas être qualifié
de pauvre si l’on se réfère à ces résultats.
ÍNDICE
199
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
Tableau 2 : Régression de type Robuste sur les facteurs
influençant les dépenses des ménages
(Source : résultats de cette étude, 2015)
Les facteurs qui influencent les dépenses ménagères ont été
étudiés à partir d’une régression Robuste réalisée sur STATA.13. Le tableau 2 présente les résultats obtenus. Concernant les facteurs influençant les dépenses ménagères, les résultats nous apprennent que pour le littoral sud malagasy, les
dépenses des villageois sont surtout fonction de l’âge, de la
taille du ménage et du niveau d’éducation. Pour justifier cela,
l’on se réfère à la colonne P>|t|, si la valeur est supérieure à
5%, la variable correspondante n’est pas conclusive. D’où,
rlg1=1.000 veut dire que la religion n’a rien à voir avec les
dépenses des communautés étudiées. Et le sexe n’influe pas
sur les dépenses des ménages car la valeur de P>|t| correspondant à cette variable est de 0,656 qui est supérieure à 5%.
ÍNDICE
200
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
Tableau 3 : Résumé de la situation socio-économique dans
la zone d’études
Variables/Sites
Taille ménage
(personnes/ménage)
Activité de pêche (%)
Dépense journalière (Ar)
Taux d’analphabétisme (%)
Ezanavo
7,72
Kotoala
6,02
Lavanono
7,32
63,33
4.123,81
73,33
27,12
2.854,72
52,54
42
8.580,00
16,00
(Source : résultats de cette étude, 2015)
Les résultats (tableau 3) corroborent les hypothèses que les
activités de pêche rapportent beaucoup plus que l’agriculture et l’élevage, chez les communautés étudiées du littoral
Androy. En outre, le niveau d’éducation des communautés
de pêcheurs dépend de l’ancienneté des infrastructures scolaires existantes; c’est-à-dire, plus l’Ecole Primaire Publique
est ancienne, plus le niveau d’éducation est élevé. Par ailleurs, les dépenses journalières suivent également la taille
des ménages; c’est-à-dire, les dépenses augmentent avec le
nombre de personnes dans un foyer.
3.2. Activités de pêche traditionnelle dans l’Androy
La pêche traditionnelle est une activité de pêche utilisant encore des moyens et techniques peu développés, c’est-à-dire,
ÍNDICE
201
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
utilisant des engins de pêche précaires et rudimentaires. La
précarité de ces moyens constitue la limite de cette activité.
Le long du littoral de l’extrême Sud, en 2011, l’étude effectuée
par Malagasy Environnement a permis d’évaluer le rapport
entre les communautés de pêcheurs et l’ensemble de la population dans l’Androy qui est de 9 442 pêcheurs parmi 700
000 habitants, soit 1,35%.
Nos enquêtes nous ont permis d’identifier 4 catégories de pêcheurs :
–– Pêcheurs stricts: ceux qui font des activités de pêche uniquement
–– Pêcheurs agro-éleveurs: ceux qui priorisent les activités
de pêche mais font aussi d’autres activités d’agriculture et
d’élevage.
–– Agro-éleveurs pêcheurs: ceux qui pratiquent et priorisent
les activités d’agriculture et d’élevage mais font aussi de
la pêche.
–– Pêcheurs mareyeurs: ceux qui sont à la fois pêcheurs et
mareyeurs (sous-collecteurs).
Ce sont des personnes qui sont à la fois pêcheurs et mareyeurs, des opérateurs locaux à petite échelle qui achètent
directement les produits des pêcheurs et les revendent localement, sans ou avec transformation, ou les acheminent
ÍNDICE
202
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
dans des marchés voisins. Les mareyeurs sont aussi parfois
appelés sous-collecteurs.
Avant de parler les sites de débarquement et les moyens
d’embarcation, il est à noter que le long du littoral Androy, les
côtes sont généralement rudes et la plage est presque étroite
et rocheuse. A cause des rochers de grès marins qui frangent
la côte sud, l’accès en mer y est très difficile pour la plupart
des sites de débarquement. A part le fort courant marin et le
changement brusque de la direction du vent provoquant une
forte agitation de la mer, cette difficulté d’accès en mer constitue le premier danger auquel font face les pêcheurs. Sur tout
le littoral Androy, nous avons pu recenser 60 sites de débarquement dont deux seulement sont facilement accessibles
(Ankobabey – Kotoala et Lavanono). (fig.7)
Quant aux embarcations, elles sont généralement de deux
types si l’on se réfère à la matière première avec laquelle elles
sont fabriquées. Il existe les pirogues Vezo qui sont faites en
Gyvotia madagascariensis ou « Farafatse » – une plante endémique du sud-ouest malagasy, et les pirogues Ntandroy qui
sont fabriquées à partir d’Adensonioides madagascariensis
ou « Daro » – une plante locale dans la vallée de Mandrare.
Les pirogues en « Farafatse » sont présentes sur presque
tout le long du littoral, tandis que celles en « Daro » se ren-
ÍNDICE
203
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
Figure 7 : Carte montrant les sites de débarquement sur le littoral
Androy
contrent surtout sur la partie est, en particulier à Ezanavo. Le
tableau 4 nous permet de bien comprendre les avantages et
les inconvénients de chacune de ces pirogues.
En analysant les caractéristiques de ces deux types de pirogues, on peut en déduire qu’elles ne sont pas très adaptées aux conditions de la mer dans cette région (mer agitée,
vent fort, sites de débarquement rocheux…). Concernant
ÍNDICE
204
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
Tableau 4 : Caractéristiques de chacun des deux types de
pirogues
Caractéristiques
Pirogue (7) Vezo
Pirogue Tandroy
Matière première
« Farafatsy »
ou Gyvotia
madagascariensis
« Daro » ou
Adansonioides
madagascariensis
Longueur
5 à 10 m
3à7m
Largeur
0,50 à 1 m
0,30 à 0,60 m
Densité
Très légère comme
un liège
Légère mais pas
comme un liège
Vitesse en mer
Très vite
Moyennement vite
Fond (base)
En « V » mais
légèrement aplatie
En « U » et aplatie
présentant souvent
des bosses et/ou
creux
Avantages
Facile à manier, à
pagayer, moins de
force de frottement,
flottabilité assurée
même pleine d’eau,
souple et résistante
Maniable, un peu
lourd à pagayer
suite à la force de
frottement, flottabilité
assurée même pleine
d’eau, moins souple
et moins résistante
Inconvénients
---
Pas faite pour la
pêche au large
Durée de vie
2 à 5 ans
1 à 3 ans
Disponibilité de
matière première
Rare et ressource en Moins rare et l’on peut
bois éloignée (espèce les trouver dans la
en voie de disparition) vallée de Mandrare
Prix
Ar 150 000 à 600 000
Ar 50 000 à 150 000
(Source : résultats de cette étude, 2015)
ÍNDICE
205
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
les matériels de pêche utilisés, sur le littoral Androy, on peut
rencontrer presque tous les engins utilisés par les pêcheurs
Vezo, sauf les sennes de plage et les filets en moustiquaire.
Le tableau 5 nous décrit un à un les engins utilisés par les
Ntandroy.
Tableau 5 : Caractéristiques de chacun des engins de pêche
utilisés dans l’Androy
Engins de pêche
Caractéristiques
Casier (pour
la pêche à la
langouste)
Longueur: 30 - 50 cm; largeur: 20 – 30 cm; hauteur : 20
– 30 cm, maille: 3 - 5mm. Originellement, cet engin a été
conçu seulement à partir d’une liane de Fort-dauphin, la
dénommée « Vahipike ». Mais, aujourd’hui, vu la rareté
de la matière première, les pêcheurs utilisent d’autres
espèces de plante pour en confectionner telles les
« Vahe » et « Nato » que les pêcheurs de Fort-dauphin
appellent « Kipa » – la nasse. Sur ce littoral, nous
avons vu des casiers qui sont faits à partir des cordes
nylons mais dont l’ossature est faite en bois souple. Les
pêcheurs nous ont expliqués que c’est l’appât qui attire
la langouste. Pour cela, ils ont ajouté que la nature ou
la qualité des matières premières avec lesquelles on
fabrique les casiers ne compte pas beaucoup.
ZZ (nom donné
par les pêcheurs
car ils ne savent
pas prononcer
le nom de
l’Organisme
allemand GTZ –
GIZ actuel, qui a
distribué ce gros
filet maillant au
requin)
Longueur: 100 - 200 m ou plus; largeur: 1,5 – 3 m; maille:
80 - 150mm. Comme tous les filets, le ZZ dispose de
lests et de flotteurs mais dont la maille (80 à 150 mm) et
les cordes sont plus grandes que celles du filet maillant. Il
est utilisé pour capturer les requins et les tortues marines
en haute mer, c’est-à-dire, au-delà du récif barrière (8).
Sa longueur varie suivant la disponibilité financière du
pêcheur mais, il peut atteindre 200 m ou plus.
ÍNDICE
206
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
Jarifa
Longueur: 150 – 300 m ou plus; largeur: 1,5 – 3 m;
maille: 100 - 150mm. Comme le ZZ, le Jarifa est aussi
utilisé pour la capture des requins et des tortues marines.
Mais, la seule différence est leur dimension. Le Jarifa est
beaucoup plus large que le ZZ.
Filet maillant
Longueur: 150 – 300 m; largeur: 1,5 – 3 m; maille: 35 60mm. C’est un filet toujours confectionné à partir de fil
en nylon. Ses dimensions varient suivant la disponibilité
financière des pêcheurs. Mais, en général, il mesure
environ 150 m de long, ou même plus, et de 3 à 4 m de
chute. La maille de ce type d’engin de pêche varie entre
20 à 40 cm suivant les espèces cibles. Pour que le filet
tienne verticalement, les pêcheurs utilisent des flotteurs
en bois qui traversent sa partie supérieure et des lests
en plombs sont disposés dans la partie inférieure. Ces
accessoires (plombs et flotteurs) sont disposés le long du
filet par intervalle de 25 cm.
Ligne
Longueur: 10 – 30 m et qui se termine par un ou plusieurs
hameçons munis d’appât.
Palangrotte
Longueur: 30 à 100 m ou plus, munie des hameçons
avec des appâts tout au long de sa longueur.
Harpon
Une sorte de sagaie – une arme en forme de flèche dont
la pointe a deux crocs recourbés et qu’on utilise pour
pêcher les gros poissons.
Longueur: 1,5 – 2,5 m dont la manche est faite en bois ou
avec du fer. L’une des extrémités est très pointue.
Fusil à poisson
C’est un système mécanique comme une catapulte mais
dont la balle est une tige possédant une tête comme
celle du harpon et le support possède une sorte de
détente comme le fusil. Cette tige de fer est reliée à son
bout par une ficelle qui la relie au support. Les pêcheurs
plongent et visent les gros poissons. Souvent les
pêcheurs utilisateurs de cet engin portent un équipement
de plongée en apnée (tels que: masque, palmes, tuba,
combinaison)
(Source : résultats de cette étude, 2015)
ÍNDICE
207
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
Le tableau 5 nous informe qu’aucun engin destructeur n’est
utilisé par les pêcheurs Ntandroy. Les sennes de plage et les
filets en moustiquaire ne sont pas utilisés par les pêcheurs
car ces derniers ne signalent pas le passage des « Tove »
- Stolephorus indicus (Van Hasselt, 1823), et « Geba » –
Herklotsichtys quadrimaculatus (Ruppel, 1837) – petits poissons pélagiques, dans cette zone. En outre, l’écosystème
marin existant, constitué quasiment par des fonds rocheux
sur les côtes, ne leur permet pas d’utiliser ces types d’engins, notamment, les sennes de plage. Toutefois, d’autres
petits poissons pélagiques tels que les « Sihely » – Rastrelliger kanagurta, Cuivier, 1816 et les « valahara » – Trachurus
delagoa passent quelques fois dans la zone. Mais, les pêcheurs utilisent des filets maillants de maille un à deux doigts
pour les capturer.
Quant aux ressources exploitées, les pêcheurs du sud capturent principalement trois groupes de produits qui sont les
poissons, les crustacés et les mollusques mais les autres produits comme l’échinoderme et l’algue, etc. sont aussi pêchés.
Après les analyses qualitatives de la composition des captures dans les trois sites, la figure 8 nous montre la répartition
des ressources marines exploitées dans l’Androy.
La figure 8 nous apprend que ce sont les poissons (52%)
et les langoustes (34%) qui sont les principales ressources
ÍNDICE
208
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
Autres (tortues, dauphins…)
2%
Poulpe
3%
Holothurie
5%
Coquillage
3%
Algues
1%
Poissons
52%
Langoustes
34%
Figure 8: Répartition des ressources marines exploitées sur le littoral Androy
Figure 8 : Répartition des ressources marines exploitées sur le littoral
Androy
Autres
Thonidae
18%
15%
Sparidae
les plus
7% exploitées dans le sud malagasy. Elles constituent
Carcharinidae
Autres (tortues, dauphins…)
Poulpe
19%
2%
également
les
principales
sources
de
revenu
des
communauSerranidae
3%
9%
Holothurie
tés5%
de pêcheurs en matière de pêche. Source d’alimentation
Lethrinidae
Lutjanidae
Algues
13%
1%
et Coquillage
de19%revenus substantiels pour les communautés littorales
3%
Figure 9:(Mahatante,
Répartition des familles
poissons
capturés sur
le littoral Androy
2008, deles
principales
familles
capturées sont,
Poissons
Langoustes
52%
entre autres,
Lethrini34%Carcharinidae, Lutjanidae, Thonidea,
dea, Serranidea et Sparidae (fig. 9).
Figure 8: Répartition des ressources marines exploitées sur le littoral Androy
Autres
15%
Thonidae
18%
Sparidae
7%
Carcharinidae
19%
Serranidae
9%
Lethrinidae
13%
Lutjanidae
19%
Figure 9: Répartition des familles de poissons capturés sur le littoral Androy
Figure 9 : Répartition des familles de poissons capturés sur le littoral
Androy
ÍNDICE
209
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
D’après ces résultats, 4 familles sont les plus capturées par
les pêcheurs de l’Androy. Ce sont les carcharinidés (19%),
lutjanidés (19%), thonidés (18%) et lethrinidés (13%) L’on
note que tout au long de l’année, parmi les 3 saisons (Asara, Asotry et Faosa), c’est surtout pendant l’Asara – saison
chaude et pluvieuse (Novembre – Mars) qu’on rencontre le
plus d’espèces.
L’observation journalière de la météo du mois d’août 2011 au
mois de décembre 2012, dans les trois sites d’études (Ezanavo, Kotoala et Lavanono) a aussi permis de faire ressortir les
efforts de pêche mensuels exacts des pêcheurs pendant cette
période (fig.10), c’est-à-dire, le nombre de jours mensuels de
sortie de pêche.
En analysant les données de cette période, les pêcheurs ont
pu sortir pendant 23 jours à Lavanono et 21 jours chacun
Nombre de jours sortis mensuels (j/mois)
25
20
15
10
5
0
Ezanavo
Kotoala
Lavanono
Figure
10: 10
Variabilité
des efforts
pêche mensuels
dansmensuels
les trois sitesdans
de débarquement
Figure
: Variabilité
desdeefforts
de pêche
les trois
(période : août 2011 – décembre 2012)
Effort de pêche moyen journalier (pêheurs/sortie/jour)
sites de débarquement (période : août 2011 – décembre 2012)
ÍNDICE
143
100,8
21070,6
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
pour Ezanavo et Kotoala pendant le mois de décembre 2011.
Tandis que les mois de janvier, juillet et octobre 2012 étaient
les mois les plus durs car, dans un mois, 2 à 5 jours seulement étaient favorables à la sortie en mer pour la pêche dans
les trois sites.
En tout, pendant cette période, pour toute la zone d’études,
l’effort de pêche moyen annuel était de 134 jours sortis, soit
37% des jours de l’année ou un peu plus du 1/3 des jours de
l’année. Avec ces résultats, l’on peut déduire l’effort de pêche
moyen mensuel dans la zone qui est de 11,17±5,86 jours de
sortie/mois.
Enfin, pour vérifier statistiquement si les efforts de pêche sont
les mêmes dans tous les sites d’étude, l’analyse de variance
de FISHER a été utilisée. La variance expérimentale, F, est
de 0.438 ; l’hypothèse les efforts de pêche mensuels dans
les sites d’études sont les mêmes est vérifiée. L’on peut en
conclure que les efforts de pêche mensuels dans les sites
d’études sont les mêmes. Autrement dit, il n’y a pas de différence significative entre les moyennes des efforts de pêche
mensuels dans les trois sites d’études.
ÍNDICE
211
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
3.3. Ressources halieutiques potentielles
Nous avons établi un certain nombre de critères qui vont
mieux nous permettre d’identifier les ressources halieutiques
potentielles :
–– Ressources encore en abondance et ciblées par les pêcheurs (permanentes ou saisonnières)
–– Ressources non protégées localement et dans la région
ouest de l’océan indien
–– Ressources de haute valeur marchande
Pour ce faire, avec l’aide des pêcheurs, les ressources du
tableau 6 ont été identifiées, mise à part la langouste (9).
Tableau 6 : Les ressources halieutiques potentielles
identifiées
Ressources
(noms
commerciaux)
Thon
Familles
Thonidae,
scombridae
Vivaneau
Lutjanidae
Requin
Carcharinidae
Observation
C’est une ressource encore en abondance
mais sous-exploitée et de très haute valeur
marchande.
Elle rassemble beaucoup d’espèces qui
constituent, dans la plupart des cas, la
majorité des captures. Cette ressource est
encore en abondance, sous exploitée et
de haute valeur marchande.
C’est une ressource très ciblée par les
pêcheurs utilisant des gros filets à cause
de la cherté de ses ailerons.
(Source : résultats de cette étude, 2015)
ÍNDICE
212
Nombre de jo
sortis mensu
(j/mois)
20
15
10
5
0
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
Ezanavo
Kotoala
Lavanono
Figure
143
100,8
70,6
25
20
1115: Efforts
10
5
0
Nombre de jours CPUE/pêcheur/sortie (kg) sortis mensuels (j/mois)
Effort de pêche moyen journalier (pêheurs/sortie/jour)
Figure 10: Variabilité des efforts de pêche mensuels dans les trois sites de débarquement
(période : août 2011 – décembre 2012)
Ezanavo
Kotoala
Lavanono
de pêche journaliers (pêcheurs/sortie/jour)
Figure 11 : Efforts de pêche journaliers (pêcheurs/sortie/jour)
64,26
Effort de pêche moyen journalier (pêheurs/sortie/jour)
36,65
31,65 très élevé à Lavanono
L’effort de pêche23,50
moyen journalier
est
22,92
21,00
18,26
11,71
8,17
(143 pêcheurs/sortie/jour),
tandis
Ezanavo
Kotoalaqu’il est de 100,8
Lavanonopêcheurs/
Figure 10: Variabilité
des efforts et
de pêche
dans les trois sitesLavanono
de àdébarquement
sortie/jour
àEzanavo
Ezanavo
70,6mensuels
pêcheurs/sortie/jour
Kotoala
Kotoala
(période : août 2011 –Thon
décembre 2012)
Réquin
Vivaneau
(fig.11). Le test de Pearson sur STATISTICA utilisé a montré
Figure 12: CPUE par pêcheur des ressources potentielles dans les trois sites
que ces efforts de pêche moyens journaliers diffèrent
signifi143
(kg/pêcheur/sortie).
100,8
cativement dans son ensemble
au seuil de 0,05.
Thon70,6
10,00
7,08
La fig.12 présente les CPUE des ressources potentielles
5,00
pour tous lesEzanavo
engins par pêcheur
dans les sites d’études.
Les
Kotoala
Lavanono
0,00
CPUE/pêcheur/sortie (kg)
Figure 11 : Efforts de pêche journaliers
(pêcheurs/sortie/jour)
9,24
7,44
Vivaneau
64,26
Réquin
CPUE moyennes par pêcheur dans la zone d'études
36,65
31,65
23,50
22,92
21,00
18,26 la zone
Figure 13: CPUE
moyennes
journalières par pêcheur des ressources potentielles
dans
11,71
8,17
d’études (kg/pêcheur/sortie).
Ezanavo
Kotoala
Thon
Lavanono
Réquin
Vivaneau
Figure 12: CPUE par pêcheur des ressources potentielles dans les trois sites
Figure 12 : CPUE par pêcheur des ressources potentielles dans les
(kg/pêcheur/sortie).
p. 15 trois sites (kg/pêcheur/sortie).
Thon
10,00
ÍNDICE
7,08
213
5,00
7,44
0,00
9,24
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
CPUE à Kotoala sont supérieures à celles des deux autres
sites car la pression y est moindre (15 à 20 pirogues pour tout
le village et hameaux autour) alors que l’accès en mer est
facile (fig. 12).
Pour vérifier statistiquement si les CPUE de chacune des ressources étudiées sont les mêmes dans les trois sites d’études,
des analyses de variances de FISHER ont été effectuées.
Après avoir appliqué le test, on a trouvé qu’il n’y a pas de différence significative entre les moyennes des captures de chacune des trois ressources étudiées (thon, requin et vivaneau)
dans les sites d’étude au seuil de 0,05. En conséquence, l’on
peut en conclure que la distribution du thon, du requin et du
vivaneau est la même dans la zone d’études.
Dans la zone d’études, les CPUE moyennes journalières
par pêcheur pour tous les engins sont présentées dans la
fig.13. En termes de qualité, le requin (9,24kg/pêcheur/sortie) est très pêché dans la zone pour ses ailerons mais la
chair est aussi consommée par les communautés. Mais, le
vivaneau (7,44kg/pêcheur/sortie) et le thon (7,08kg/pêcheur/
sortie) sont aussi très capturés (fig. 13). Le test de Pearson
sur STATISTICA a montré qu’il n’y a pas de différence significative entre les moyennes journalières des CPUE de ces trois
ressources étudiées au seuil de 0,05.
ÍNDICE
214
CPUE/pêcheur/s
(kg)
36,65
23,50
31,65
21,00
22,92
18,26
8,17
Ressources
halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
Ezanavo
Kotoala
Lavanono
de Madagascar
Thon
Réquin
Vivaneau
11,71
Figure 12: CPUE par pêcheur des ressources potentielles dans les trois sites
(kg/pêcheur/sortie).
Thon
10,00
7,08
5,00
7,44
0,00
Vivaneau
9,24
Réquin
CPUE moyennes par pêcheur dans la zone d'études
Figure 13: CPUE moyennes journalières par pêcheur des ressources potentielles dans la zone
13 : CPUE moyennes journalières par pêcheur des
d’étudesFigure
(kg/pêcheur/sortie).
ressources potentielles dans la zone d’études (kg/pêcheur/sortie).
La fig.14 suivante montre les variabilités des moyennes menp. 15 suelles des CPUE pour tous les engins par pêcheur dans les
sites d’étude. Pour les ressources thonières, l’on observe
deux pics de captures qui sont les mois de décembre (période chaude et pluvieuse) et d’avril (fin de la période chaude
et pluvieuse et début de la période fraîche) (fig.14). Cepen-
CPUE/pêcheur/sortie
25,00
20,00
15,00
10,00
5,00
0,00
CPUE/pêcheur Ezanavo
CPUE/pêcheur Kotoala
CPUE/pêcheur Lavanono
Figure 14: Variabilité mensuelle des CUPE du thon dans les sites d’étude (kg/pêcheur/sortie).
CPUE/pêcheur/sortie
Figure 14 : Variabilité mensuelle des CUPE du thon dans les sites
35,00
d’étude (kg/pêcheur/sortie).
30,00
25,00
20,00
15,00
10,00
5,00
0,00
ÍNDICE
215
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
dant, l’on observe également que pour la saison fraîche (mai,
juin et juillet), la capture des thons continue toujours avant de
chuter le mois d’octobre (début de la période sèche, chaude
et venteuse).
CPUE/pêcheur/sortie
Enfin, la fig.15 nous montre également la variabilité des captures des thons car l’on peut bien observer la différence entre
les captures pour les mois de novembre et décembre de l’année 2011 et ceux de l’année 2012. Les requins sont très pêchés les mois de décembre et mai. Les pêcheurs arrêtent l’uti lisation des filets maillants aux requins (ZZ et Jarifa) du mi-mai
25,00
à mi-novembre,
à cause du passage des baleines (fig.15).
20,00
Les10,00
captures pour les vivaneaux présentent trois pics qui
5,00
surviennent en décembre, avril et août (fig.16). La proportion
0,00
des CPUE des ressources potentielles par rapport aux captures totales
dans les sites d’étude
est présentée
par la fig.17.
CPUE/pêcheur Ezanavo
CPUE/pêcheur Kotoala
CPUE/pêcheur Lavanono
15,00
CPUE/pêcheur/sortie
Figure 14: Variabilité mensuelle des CUPE du thon dans les sites d’étude (kg/pêcheur/sortie).
35,00
30,00
25,00
20,00
15,00
10,00
5,00
0,00
CPUE/pêcheur Ezanavo
CPUE/pêcheur Kotoala
CPUE/pêcheur Lavanono
CPUE/pêcheur/sortie
Figure 15: Variabilité mensuelle des CPUE du requin dans les trois sites d’étude
Figure 15 : Variabilité mensuelle des CPUE du requin dans les trois
(kg/pêcheur/sortie).
15,00
sites d’étude (kg/pêcheur/sortie).
10,00
5,00
ÍNDICE
0,00
216
CPUE/pêcheur/
CPUE/pêcheur/
25,00
15,00
20,00
15,00
10,00
10,00
5,00
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
CPUE/pêcheur Ezanavo
CPUE/pêcheur Kotoala
CPUE/pêcheur Lavanono
5,000,00
0,00
CPUE/pêcheur Ezanavo
CPUE/pêcheur Kotoala
CPUE/pêcheur Lavanono
Figure 15: Variabilité mensuelle des CPUE du requin dans les trois sites d’étude
(kg/pêcheur/sortie).
Figure
14: Variabilité mensuelle des CUPE du thon dans les sites d’étude (kg/pêcheur/sortie).
CPUE/pêcheur/sortie
CPUE/pêcheur/sortie
15,00
35,00
30,00 10,00
25,00
20,00 5,00
15,00
10,00 0,00
5,00
0,00
CPUE/pêcheur Ezanavo
CPUE/pêcheur Kotoala
CPUE/pêcheur Lavanono
CPUE/pêcheur Kotoala
Figure 16: CPUE/pêcheur Ezanavo
Variabilité mensuelle des CPUE
du vivaneau dans les troisCPUE/pêcheur Lavanono
sites d’étude
Figure 16
: Variabilité mensuelle des
CPUE du vivaneau dans
les
(kg/pêcheur/sortie).
trois
sites d’étude
(kg/pêcheur/sortie)
Figure 15: Variabilité
mensuelle
des CPUE
du requin dans les trois sites d’étude
Thon
Autres (kg/pêcheur/sortie).
21%
41%
CPUE/pêcheur/sortie
15,00 toute la zone d’étude, le thon et le requin sont les plus
Pour
Requin Vivaneau
capturés,
suivis par le vivaneau (fig.17). Ces données
justi10,00
21%
17%
fient
5,00 le choix de ces trois ressources parmi les ressources
Figure 17: Proportion des CPUE des ressources potentielles par rapport aux captures totales
halieutiques
potentielles. La fig.18 présente les variations
0,00
dans
la zone d’études.
saisonnières des captures des ressources potentielles. Pour
l’ensemble de la zone d’étude, quantitativement, ce sont les
CPUE/pêcheur Ezanavo
CPUE/pêcheur Kotoala
CPUE/pêcheur Lavanono
requins qui sont les plus pêchés pendant les deux premières
Figure 16: Variabilité mensuelle des CPUE du vivaneau dans les trois sites d’étude
(kg/pêcheur/sortie).
p. 16 Thon
21%
Autres 41%
Requin 21%
Vivaneau
17%
Figure 17: Proportion des CPUE des ressources potentielles par rapport aux captures totales
Figure 17 : Proportion des CPUE des ressources potentielles par
dans la zone d’études.
rapport aux captures totales dans la zone d’études.
ÍNDICE
217
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
0,00
6,07
6,70
6,89
11,40
7,77
6,77
9,35
16,30
ASARA
ASOTRY
CPUE/pêcheur (thon)
FAOSA
CPUE/pêcheur (requin)
CPUE/pêcheur (vivaneau)
zone d’études (kg/pêcheur/sortie).
20,00
25,00
20,00
Effort de pêche (jours de sortie/mois)
CPUE (kg/pêcheur/sortie)
Figure 18: Variation saisonnière des ressources potentielles dans la zone d’études
Figure 18 : Variation saisonnière des ressources potentielles dans la
(kg/pêcheur/sortie).
saisons – « asara » et « asotry », tandis que les deux15,00
autres
10,00
10,00
ressources
(thon et vivaneau) sont presque capturées pen5,00
5,00
dant0,00toute l’année (fig. 18).
0,00
11,40
16,30
15,00
1,5
(kg/pêcheur/sortie).
Effort de pêche (jours de sortie/mois)
Précipitations (mm/an)
El Nino selon catégorie
CPUE (kg/pêcheur/sortie)
(faible, modéré, fort, très fort)
0,00
6,07
6,70
6,89
7,77
6,77
9,35
L’étude de la tendance captures/efforts de pêche des resCPUE/pêcheur (thon)
CPUE/pêcheur (réquin)
CPUE/pêcheur (vivaneau)
Effort de pêche zone d'études
sources
potentielles
est
montrée
dans
la
fig.19.
Pour l’enFigure 19: Tendance CPUE/Efforts de pêche mensuels des ressources potentielles dans la
zone d’études.
semble
deA S Ala
zone d’études,A Sl’on
peut observer Fque,
généraRA
OTRY
AOSA
2,5
lement, CPUE/pêcheur (thon)
les captures augmentent
avec l’effort
de pêche 1400
(fig.
CPUE/pêcheur (requin)
CPUE/pêcheur (vivaneau)
1200
2
19).
L’on remarque également les variabilités mensuelles
et
1000
Figure 18: Variation saisonnière des ressources potentielles dans la zone d’études
800
20,00
1
25,00 600
15,00
20,00 400
0,5
15,00 200
10,00
0
10,00
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
5,00
0,00
5,00
Précipitations moyennes annuelles
Survenue El Nino selon sa catégorie
0,00
0
Figure 20 : Variabilité inter annuelle de précipitations à Ambovombe Androy et El Nino
(Sources:CPUE/pêcheur (thon)
Direction Générale deCPUE/pêcheur (réquin)
la Météorologie – DGM,
2009, CNA, 2014 et site
web NOAA, 2015)
CPUE/pêcheur (vivaneau)
Effort de pêche zone d'études
Liste des
Figure
19:tableaux
Tendance CPUE/Efforts de pêche mensuels des ressources potentielles dans la
Figure
19 : Tendance CPUE/Efforts de pêche mensuels des
zone
d’études.
Tableau
1: Monographie simple des sites choisis
Nino selon catégorie
, modéré, fort, très fort)
Ezanavo
2
Kotoala
ÍNDICE
Lavanono
1,5
1
ressources potentielles dans la zone d’études.
7
Population
350
500
760
Ménages
218
80
110
180
Pêcheurs
120
190
330
1400
Pirogues
30 1200
à 35
15 1000
à 20
45 800
à 50
Précipitations (mm/an)
Village
2,5
(Source: enquêtes auprès des Chefs Fokontany, 2014)
600
400
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
inter annuelles des captures (cas des captures pour les mois
d’octobre, novembre et décembre 2011 et celles de l’année
suivante pour la même période). A cause d’une alternance de
pluie et de vent, les pêcheurs n’ont pas pu sortir les mois de
janvier, février et mars 2012 et suite au passage régulier du
vent « tiomena » en période « faosa ». Il en a été de même
également pour les mois de septembre, octobre et novembre
2012.
3.4. ariabilités climatiques dans l’Extrême Sud de
Madagascar
L’extrême sud de Madagascar est très réputé comme étant
une région sèche où règne la famine de manière plus ou
moins régulière. La sécheresse y constitue le principal risque
climatique (tableau 7). Le Dipôle de l’Océan Indien (RiddeTableau 7 : Principaux risques climatiques pour le Sud
malgache
Aléas
Sécheresse
Fréquence
1968 à 1999, 4 épisodes de sécheresse (* : mais 14 de
1896 – 2014)
Zones
Régions Sud et Sud-Ouest
Groupes
Petits exploitants agricoles, petits éleveurs
Secteurs (10)
Agriculture et élevage
(Source: extrait du tableau montrant les principaux risques du
changement climatique à Madagascar, PANA, 2006 et * : résultats de
la présente étude)
ÍNDICE
219
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
0,00
6,07
6,70
6,89
11,40
7,77
9,35
6,77
16,30
rinkohf et al., 2013) entrainerait l’intensification du vent dans
la partie sud de la Grande Ile qui est très venteuse pendant
les mois d’août en octobre – la période correspondant à la
saison sèche,
chaude et venteuse,
la dénommée
ASARA
ASOTRY
F A Olocalement
SA
« faosa ».
Cependant,
depuis
plusieurs
décennies,
les auCPUE/pêcheur (thon)
CPUE/pêcheur (requin)
CPUE/pêcheur (vivaneau)
tochtones ont remarqué la présence du vent presque pendant
Figure 18: Variation saisonnière des ressources potentielles dans la zone d’études
(kg/pêcheur/sortie).
toutes les saisons.
20,00
25,00
Effort de pêche (jours de sortie/mois)
CPUE (kg/pêcheur/sortie)
Si 15,00
la moyenne annuelle des précipitations est de 20,00
505,70
15,00
mm/an
à Ambovombe Androy, pour les 30 dernières an10,00
10,00
nées,
le
5,00 la fig.20 présente les anomalies climatiques dans
5,00
0,00
0,00
sud (exemple du cas d’Ambovombe Androy). Depuis 1953
jusqu’en 2014, 8 périodes de famines ont été répertoriées
CPUE/pêcheur (thon)
CPUE/pêcheur (vivaneau)
Effort de pêche zone d'études
(1959-1960,
1970, CPUE/pêcheur (réquin)
1980-1982, 1985-1986,
1991-1992,
2003,
Figure 19: Tendance CPUE/Efforts de pêche mensuels des ressources potentielles dans la
zone d’études.
1400
Précipitations (mm/an)
1200
2
1000
1,5
800
1
600
400
0,5
0
200
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
El Nino selon catégorie
(faible, modéré, fort, très fort)
2,5
Précipitations moyennes annuelles
0
Survenue El Nino selon sa catégorie
Figure 20 : Variabilité inter annuelle de précipitations à Ambovombe Androy et El Nino
FigureDirection
20 : Variabilité
annuelle
de2009,
précipitations
à Ambovombe
(Sources:
Générale de lainter
Météorologie
– DGM,
CNA, 2014 et site
web NOAA, 2015)
Androy et El Nino
(Sources
:
Direction
Générale
de la Météorologie – DGM, 2009,
Tableau 1: Monographie simple des sites choisis
CNA, 2014 et site web NOAA, 2015) 7
Liste des tableaux
Village
Ezanavo
Kotoala
Lavanono
ÍNDICE
Population
350
500
760
Ménages
220
80
110
180
Pêcheurs
120
190
330
Pirogues
30 à 35
15 à 20
45 à 50
(Source: enquêtes auprès des Chefs Fokontany, 2014)
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
2006 et 2014) (fig. 20 petits cercles noirs et blanc à l’intérieur). On observe également une tendance en baisse des
précipitations, notamment, pour les 20 dernières années.
La fig.20 informe également que la survenue du kere n’est
forcément causée par des faibles précipitations mais surtout
de la répartition temporelle et spatiale de ces dernières. Par
exemple, l’Androy n’a reçu que 285,8mm de pluies en 2008
mais les communautés n’ont pas connu du kere tandis que
l’année 2014, il y avait une pluie de 499,4mm/an alors que
cette région a connu une période de kere car il ne pleuvait
que 28 jours. Le tableau 8 montre les kere qui sont survenus
dans l’Androy depuis 1896.
Tableau 8 : Les « kere » qui sont survenus dans l’Androy
avec leurs caractéristiques
Période
Caractéristiques
Période de
décalage
de kere
(années)
*1896
Précipitations: 97 mm en 21 mois
*Avril 1902
en Décembre
1903
Précipitations: 47 mm en 15 mois
6
1928
Causée par une longue sécheresse et
l’introduction de la cochenille Dactylopius,
Précipitations: 650 mm
25
1931
Précipitations: 391 mm et a causé
l’émigration d’un grand nombre de la
population
3
ÍNDICE
221
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
1943
Précipitations: 293 mm. Ce kere a été
appelé “Mozatse” (nom d’une personne qui
l’a marquée)
12
*Mars 1948
en Novembre
1949
Précipitations: 160 mm en 20 mois
5
*Février 1959
en Juin 1960
Précipitations: 118 mm en 17 mois (qui
est appelé localement Betsimeda – mode
de cuisson de la viande typique chez les
Ntandroy, car les gens ont mangé leurs
bétails)
10
*1970
Précipitations: 26 mm en 11 mois (Kere zara
mofo – littéralement : famine distribution de
pain, c’est-à-dire marquée par la distribution
de pains)
10
1980 – 1982
Santira vy, malalake akanjo (littéralement:
ceinture de fer, vêtements lâches)
10
*1985 – 1986
Beaucoup de morts (Tsy mitolike –
littéralement: qui ne se tourne pas)
3
*Avril 1991 en
Octobre 1992
Précipitations: 90 mm en 19 mois (appelé :
S.O.S ou hesoheso chez les Ntandroy)
5
2003
(marquée par les opérations de téléthon
national)
11
2006
(Kere arikatoke – famine tout autour)
4
2014
Causée par des précipitations de courte
durée (28 jours sur 365) malgré les 499,4
mm de pluie
8
(Sources: *ORSTOM/DMH/CNRE et Lebigre & Reaud-Thomas,
1995, Randriamanantsara, 2010 et résultats de cette étude, 2014)
Ainsi, la fig.20 informe également que la plupart des survenues d’El Nino ne provoquent pas forcément du kere (fig.20).
ÍNDICE
222
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
Pourtant, l’on remarque que les kere sont soit précédés par
l’occurrence d’El Nino (1959-1960, 1970, 1980 et 2003) ou
coïncident avec ce dernier (1982, 1986, 1991 et 2006). Cette
situation confirme encore qu’El Nino a une corrélation négative avec les précipitations dans le Sud (Raholijao, 2009). Enfin, les périodes d’occurrences de ces « kere » sont très variables avec des intervalles de temps entre deux kere de 3 à 5
ans, 6 à 8 ans, 10 à 12 ans et 25 ans (tableau 7, 3è colonne).
Ces données témoignent en conséquence les variabilités climatiques dans le sud malgache.
4. Discussions
A Madagascar, les dépenses bihebdomadaires des pêcheurs
(Ar71.662±4 298 à Ankilibe Toliara, MacClanahan et al., 2014
et Ar120.120,00 à Lavanono) et des pêcheurs agro-éleveurs
(Ar57.733,33 à Ezanavo) sont toujours supérieures à celles
des agro-pêcheurs (Ar53.500±16.055 à Imorona Mananara
Nord, MacClanahan et al., 2014 et Ar39.966,10 à Kotoala.
Ces données confirment l’hypothèse que les pêcheurs et les
pêcheurs agro-éleveurs (cas d’Ankilibe Toliara, Lavanono et
Ezanavo) rapportent plus que les agro-pêcheurs (cas d’Imorona Mananara Nord et Kotoala). Ce qui peut expliquer la
capacité de résilience un peu élevée des communautés du
ÍNDICE
223
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
littoral sud malgache par rapport aux agro-éleveurs – tels que
constatés lors des survenues des famines dans le sud.
La taille de ménage est généralement élevée dans notre
zone d’étude avec une moyenne de 6,72 personnes/ménage
alors que la nationale est de 5,9 personnes/ménage, et celle
de Mananara Nord de 4,97 personnes/ménage (Mahatante,
2010). Cette situation dans le sud est due à la pratique du
mariage précoce, mais également à la non pratique de planning familial suite au faible niveau d’éducation de la population en général. A ce dernier s’ajoute aussi la philosophie qui
qualifie les descendants comme étant une richesse avant tout
et comme des cadeaux divins.
En outre, l’effort de pêche est faible car si, à Anakao dans la
région sud-ouest, il a été estimé à 318 jours/an (Razanoelisoa, 2008), dans notre zone étude, il est seulement de 134
jours/an. Ainsi, l’on a constaté que, si selon Razanoelisoa,
2008, il y a deux pics de capture dont un en février et un autre
en août dans la région sud-ouest, dans le littoral boréal malgache, de manière générale, elle varie en fonction du climat.
Cependant, pour tous les engins, la CPUE est largement supérieure dans notre zone d’études avec 17,18kg/pirogue/sortie contre 12,81kg/sortie/pirogue, en saison chaude, à Ankilibe (Mahatante, 2008).
ÍNDICE
224
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
Lors de cette étude, l’on a pu recenser 413 pirogues pour tout
le littoral Androy, contre près de 900 pirogues pour le seul
village d’Ankilibe – région Sud-ouest. Ces données justifient,
entre autres, la sous-exploitation des ressources halieutiques
dans le sud malgache alors qu’on parle de 54.000 tonnes de
gros poissons pélagiques contre 9.000 t et 14.000 t pour le
Sud-est et le Nord-est et 15.000 tonnes de petits poissons
pélagiques (Krakstad et al., 2008).
Enfin, selon Demoraes, 1999 et Raholijao, 2009, la période
d’occurrence d’El Niño qui est de 2-7 ans est devenue plus
courte au cours des dix/quinze dernières années à cause du
réchauffement global alors que ce phénomène présente des
corrélations négatives avec les précipitations dans le sud et
aggrave la sécheresse (Raholijao, 2009). Cette situation est
alarmante pour la population du sud de Madagascar et elle
doit en conséquence s’y préparer et s’y adapter. Néanmoins,
El Niño n’est pas obligatoirement responsable de la sécheresse car l’on observe qu’il n’y a pas de famines dans beaucoup de périodes de survenue d’El Niño. D’autres facteurs
devraient être pris en compte, notamment, les phénomènes
d’upwelling (Bemiasa, 2009 et Voldsund, 2011) et l’Indian
Ocean Dipole – IOD (Ridderinkhof et al., 2013).
ÍNDICE
225
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
5. Conclusion
En conclusion, dans la zone littorale Androy, une variation de
1% de l’âge de la population entraine une augmentation de
0.29 (voir coef.) sur leur dépense. Ainsi, le facteur le plus déterminant de la dépense villageoise est la taille du ménage
car une augmentation de 1% de cette dernière entraine une
hausse de 0.53% au niveau de sa dépense.
Ensuite, le niveau d’analphabétisme est négativement colinéaire aux dépenses, c’est-à-dire, si le taux d’alphabétisme
augmente de 1%, les dépenses diminuent de 0.2%. D’où l’appauvrissement de la zone concernée par le problème d’analphabétisme, à l’instar du village d’Ezanavo.
En outre, concernant les activités de pêche, si l’on se réfère
aux catégories de pêcheurs et aux dépenses ménagères, l’on
peut bien dire que la pêche tient une place primordiale dans
le revenu des communautés de pêcheurs du littoral Androy.
Cette situation nous apprend que, chez les communautés littorales, la pêche rapporte beaucoup plus que les autres activités principales des paysans malagasy (agriculture et élevage).
De plus, la situation des ressources potentielles identifiées
est encore prometteuse car les CPUE sont encore élevées
ÍNDICE
226
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
alors que les pressions sont moindres. L’on peut dire alors
que ces ressources sont sous-exploitées et leur exploitation rationnelle contribuera énormément dans la lutte contre l’insécurité alimentaire.
L’accès en mer est très limité à cause de la mer très agitée
presque en permanence. Les passes en face des sites de
débarquement sont parfois dangereuses dans la plupart du
littoral. Ainsi, d’une part, l’effort de pêche est limité alors que
les pêcheurs sont déjà peu nombreux, mais, d’autre part, il y
a une régulation naturelle de la pression sur les ressources
exploitées.
Pour terminer, l’aménagement de la pêche dans son ensemble, c’est-à-dire le développement des activités halieutiques, est une des meilleures adaptations pour l’amélioration
du niveau de vie de la population, notamment pour l’extrême
Sud de Madagascar. En plus, soulignons que la pêche a été
considérée comme étant la principale filière porteuse pour
l’Androy (PRDR, 2006). Cependant, l’alphabétisation des
communautés de pêcheurs, ainsi que la mise en place des
infrastructures scolaires, s’avère très primordiale.
Enfin, les variabilités climatiques dans le sud sont en rapport
avec le phénomène d’El Niño, vu que ce dernier a une corrélation négative avec la sécheresse (Raholijao, 2009). CepenÍNDICE
227
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
dant, l’on a également observé des périodes d’occurrence
d’El Niño sans provoquant de sécheresse dans le sud de Madagascar. Cette situation nous incite à prendre en compte et
à étudier le lien entre cette dernière et les deux autres phénomènes océanographiques qui sont observés dans le sud, en
l’occurrence, l’IOD et l’upwelling du sud de Madagascar. Des
outils de prévision de la météo sont nécessaires.
Références bibliographiques
ARIVELO, A. T. 2009. Malagasy climate variability, characteristics,
modes, mechanisms, modelling, teleconnection and prediction. A
Thesis submitted at the School of Graduate Studies of Addis Ababa
University, ETHIOPIA, in partial fulfillment of the requirements for
the degree of PhD in Physics. 153p +Annexes.
BATTISTINI, R. 1964. L’extrême Sud de Madagascar, étude géomorphologique. In le Relief de l’intérieur (Tome I). Etudes malgaches,
département de Géographie – Université de Madagascar. 22 – 31
p, 50 – 51 p.
BEMIASA, J. 2009. Dynamique des pêcheries traditionnelles d’anchois, de calmars et de poulpes du Sud-ouest de Madagascar :
utilisation des outils océanographiques pour la gestion des ressources. Thèse de Doctorat. Institut Halieutique et des Sciences
Marines – Université de Toliara. 100-184 p.
ÍNDICE
228
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
BERTHOIS, L., BATTISTINI, R. et CROSNIER, A. 1964. Recherches
sur le relief et la sédimentologie du plateau continental de l’extrême
Sud de Madagascar. 41p.
CINNER, J.E., 2008. Le rôle des tabous dans la conservation des ressources côtières à Madagascar. Ressources marines et traditions
– Bulletin d’information n°22. 15 – 24p.
DECARY, R. 1930 : L’ANDROY – Extrême Sud de Madagascar. Essai
de Monographie Régionale I. Histoire – Civilisation – Colonisation.
Ed. Géographiques, Maritimes et Coloniales – Paris.
DECARY, R. 1933 : L’ANDROY – Extrême Sud de Madagascar. Essai
de Monographie Régionale II. Histoire – Civilisation – Colonisation.
Ed. Géographiques, Maritimes et Coloniales – Paris. 284p.
DEFOORT, E., L’Androy. Essai de monographie (avril 1911 – juillet
1912), Imprimerie officielle, Antananarivo : s.éd, 1913.
DEMORAES, F. 1999. Etudes des conséquences immédiates à terme
des phénomènes associés à un événement El Niño ; Intérêt d’une
approche géographique. Faisabilité et perspectives de la recherche
en Equateur (1982-98). Mémoire de DEA Interface Nature / Sociétés – Université de Savoie. 77p.
DONCQUES, G. (1975). Contribution geographique à l’etude du climat de Madagascar. Nouvelle Imprimerie des Arts Graphiques.
HEURTEBIZE, G. & VERIN, P. 1974. « Premières découvertes sur
l’ancienne culture de l’intérieur de l’Androy (Madagascar) : Archéo-
ÍNDICE
229
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
logie de la vallée de Lambonaty sur la haute Manambovo », Journal
de la Société des Africanistes, n°64. pp. 113-121.
HEURTEBIZE, G.1986. Travaux et documents. Quelques aspects de
la vie dans l’Androy, n°24, Antananarivo : Musée d’Art et d’Archéologie.
KRAKSTAD, J.O., Mehl, S., Roman, R.E., Escobar-Porras, J., Stapley, J., Flynn, B., Olsen, M. & Beck, I.M. 2008. East Madagascar
Current Ecosystem Survey, 23 august – 01 october 2008. Cruise
reports, ‘Dr. Fridtjof Nansen’. NORAD/FAO Project GCP/INT/730/
NOR.
LEBIGRE, J.M. et REAUD-THOMAS, G. 1995. Androka (Extrême Sud
de Madagascar), cartes d’évolution des milieux. Collection « Iles et
Archipels » n°30. DYMSET, Université de la Nouvelle-Calédonie et
Université de Toliara, IH.SM. 69p + Annexes.
LÖVEI, G. L. 2013. Modern examples of extinctions. Encyclopedia of
Biodiversity, Volume 5: 365p.
MAHATANTE, T.P. 2008. Activités et propositions d’aménagement de
la pêche traditionnelle dans le village d’Ankilibe – Sud-ouest de
Madagascar. Mémoire de fin d’études pour l’obtention de diplôme
de Maîtrise en Sciences et Techniques de la Mer et du Littoral. Institut Halieutique et des Sciences Marines de l’Université de Toliara
– Madagascar. 60p.
MAHATANTE, T.P. 2010. Identification des influences des facteurs environnementaux sur la population de la Réserve de Biosphère de
Mananara Nord en vue d’une étude d’impacts du Changement Cli-
ÍNDICE
230
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
matique : propositions d’adaptation. Mémoire de fin d’études pour
l’obtention de Diplôme d’Etudes Approfondies. Institut Halieutique
et des Sciences Marines de l’Université de Toliara – Madagascar.
70p + annexes.
MARA, E.R. 1990. Bioécologie et dynamique des populations de langoustes palinuridea australes malgaches. Thèse de Doctorat de 3è
cycle. Etablissement d’Enseignement Supérieur des Sciences de
l’Université de Toliara – Océanographie biologie halieutique. Partie
I. 1 – 30p.
MCCLANAHAN, T. R., J. E. Cinner, C. Abunge, A. Rabearisoa, P.
Mahatante, F. Ramahatratra, and N. Andrianarivelo. 2014. Perceived benefits of fisherFisheries management restrictions in Madagascar. Ecology and Society 19(1): 5. http://dx.doi.org/10.5751/
ES-06080-190105.
MCCLANAHAN, T.R., CINNER, J.E., MAINA, J., GRAHAM, N.A.J.,
DAW, T.M., STEAM, T.M., WAMUKOTA, A, BROWN, K., ATEWEBERHAN, M., VENUS, V. et POLUNIN, N.V.C. 2009. Conservation
action in a climate change. WCS, Marine Programs, New York –
USA. 53 – 59p.
MORLAT, L. 2009. La gestion des impluviums en Androy (Madagascar) – Un levier pour le changement social. Etude et travaux en
ligne N°24. Editions du Gret. 95p.
PANA, 2006 – Plan d’Action National d’Adaptation aux changements
climatiques à Madagascar: Direction générale de l’Environnement
– Ministère de l’Environnement, des Eaux et Forêts. 64p.
ÍNDICE
231
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
PAVIN de Lafrage Magali, 1997, Etude socio-économique des ressources de production des ruminants dans l’Androy : zébus,
chèvres, moutons. Etablissement National d’Enseignement Supérieur Agronomique de Dijon (Vétérinaires sans Frontières)
PEARSON, M.P., Godden, K., Ramilisonina, Retsihisatse, Schwenninger, J., Smith, H. 1996. The early Antandroy Kingdom: Excavations
and Survey in Androy 1995. Nyame Akuma. N⁰ 45: pp.60 – 64.
PRDR ou programme régional de développement rural. 2006. Outils
de décision pour le programme de développement rural de la région Androy.
PRD ou Plan Régional de Développement de la Région Androy – Province autonome de Toliara. 2005. Outils de décision pour le développement durable de la région Androy. 107p + annexes.
RAHOLIJAO, N. 2009. La sécheresse et le changement climatique à
Madagascar. Atelier sur la lutte contre la dégradation des terres :
valorisation des acquis et perspectives. Direction Générale de la
Météorologie. 36p.
RAJAONARISON, V.T. 2015. Utilisation de l’eau dans le pays Ntandroy : cas de la Commune rurale d’Ambovombe Androy. Mémoire
de maîtrise en géographie de la Faculté des Sciences et des Lettres
de l’Université de Toliara. 102p.
RAMAHATRATRA, F. 2014. Etude de la capacité de résilience du
grand récif de Toliara et de sa gestion durable (facteurs poissons
herbivores). Thèse de Doctorat de 3è cycle. Institut Halieutique et
des Sciences Marines de l’Université de Toliara. 126p + annexes.
ÍNDICE
232
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
RANDRIAMANANTSARA, 2010. Stratégie de survie de la population
des bas Manambovo confrontée aux conditions naturelles ingrates.
Mémoire de maîtrise – Département de Géographie de l’Université
de Toliara. 112p.
RAZANANDRAINY Fabrice Berthin, 2010, Problèmes et perspectives
d’avenir de l’élevage à Ambovombe- Androy. Université de Toliara.
Projet de Thèse. 83p.
RAZANOELISOA, J. 2008. Aménagement et Gestion Intégrées des
Ressources Biologiques. Application à la Région d’Anakao (SudOuest de Madagascar). Thèse de Doctorat en Halieutique. Spécialité : Gestion des Ressources. IH.SM. 180 p.
REJELA, M.N., 1993. La pêche traditionnelle Vezo, Sud-ouest de Madagascar. Un système d’exploitation dépassé ? Thèse de Doctorat.
Université de Bordeaux 3. 384p.
RIDDERINKHOF, W., LE BARS, D., VON DER HEYDT, A. S. and DE
RUIJTER, W. P. M. 2013. Dipoles of the South East Madagascar
Current. Geophysical research letters, vol. 40, 558–562.
TIANARISOA, T. 2010. L’expédition sur la faune et la flore marines
dans le « grand Sud » malgache. Compte rendu de l’Expédition
Atimo vata’e. MNHN – IH.SM – WCS. 31 p.
TOVONDRAFALE, T. 2015. The elephant bird (Aepyornithidae): palaeoecological implications in southern Madagascar and extinction
causes. Thèse de doctorat de troisième cycle. Formation doctorale
Sciences de la terre, Faculté des Sciences – Université de Toliara.
86 – 125p.
ÍNDICE
233
Mahatante Tsimanaoraty Paubert,
Fanazava Rijasoa & Mara Edouard Remanevy
VOLDSUND, A. «The dynamics of the east Madagascar current system and its influence on the biological production associated to the
shelf – an observational study». Master’s thesis in physical oceanography. University of Bergen, 2011. 95p.
Notas
1. Territoire bien délimité et caractérisé par un climat aride et semi-aride dans l’extrême sud de Madagascar
2. Tiomena (littéralement: vent rouge) est le nom que les communautés ont attribué au vent à cause de la couleur de la poussière qu’il
soulève. Il peut être appelé « tiopoty » (littéralement: vent blanc) dans
d’autres endroits où la poussière est incolore.
3. Une remontée d’eaux profondes
4. Le nombre de pêcheurs sont souvent exagérés par les Chefs Fokontany car ces derniers espèrent toujours recevoir des dons après
l’enquête – une des conséquences des interventions des projets humanitaires.
5. Ce sont les villages d’agro-pêcheurs où le nombre d’embarcations
utilisées dépasse les 30 pirogues.
6. Asara : novembre – avril (période de pluie et chaude), Asotry : mai
– juillet (période fraîche et souvent venteuse), Faosa : août – octobre
(période chaude, sèche et venteuse)
ÍNDICE
234
Ressources halieutiques potentielles et propositions
d’adaptation aux variabilités climatiques dans l’extrême Sud
de Madagascar
7. Quand la longueur d’une pirogue Vezo dépasse les 8 m, on l’appelle « Voringeze » - une dénomination qui la différencie des autres à
cause de sa taille
8. Par définition, un récif est tout obstacle en mer. Le nôtre est constitué de grès marin et frange la côte sud.
9. Ressource déjà surpêchée dans la partie sud de Madagascar, notamment dans les trois sites de débarquement choisis.
10. Bien que la pêche ne soit pas mentionnée dans PANA comme
étant l’un des secteurs à risque vis-à-vis du changement climatique,
elle l’est car cette activité est dictée par le climat.
ÍNDICE
235
DOI: 10.14198/MDTRRA2015.ESP.10
International Master programme on Sustainable
Fisheries Management
Bernardo Basurco1, Ramón Franquesa2 &
José L. Sánchez Lizaso3, 4
Mediterranean Agronomic Institute of Zaragoza, CIHEAM
University of Barcelona
3
University of Alicante
4
Corresponding author: [email protected]
1
2
Abstract
This article presents a review of the international master programme organized by the University of Alicante (UA), the
Spanish Ministry of Agriculture, Food and Environment (MAGRAMA), through the General Secretariat of Fisheries (SGP),
and the International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), through the Mediterranean Agronomic Institute of Zaragoza (IAMZ). The Master was initially
developed in cooperation with the University of Barcelona in
ÍNDICE
236
International Master programme on Sustainable Fisheries
Management
the period 2004-2009, and has counted on the collaboration
of the Department of Fisheries and Aquaculture of the Food
and Agriculture Organization of the United Nations (FAO)
since the beginning.
Given the international scope of the marine environment, the
need arises to establish a common method and language to
be used between experts of different countries sharing fisheries. To train specialists that can facilitate cooperative measures to benefit all stakeholders is undoubtedly the great challenge, which this Master in Sustainable Fisheries Management (formerly Fisheries Economics and Management) has
been addressing since 2004. In this article we describe the
main topics that have been addressed, providing a short review of the training activities implemented and their impact.
Keywords: Training, Fisheries, Management, Master programme
Résumé
Cet article présente une revue du programme de master international organisé par l’Université d’Alicante (UA), le Ministère Espagnol de l’Agriculture, de l’Alimentation et de l’Environnement (MAGRAMA), à travers le Secrétariat Général des
Pêches (SGP), et le Centre International de Hautes Études
ÍNDICE
237
Bernardo Basurco, Ramón Franquesa &
José L. Sánchez Lizaso
Agronomiques Méditerranéennes (CIHEAM), à travers l’Institut Agronomique Méditerranéen de Saragosse (IAMZ).
Le Master a été initialement développé en coopération avec
l’Université de Barcelone, dans la période 2004-2009, et a
bénéficié de la collaboration du Département des Pêches et
de l’Aquaculture de l’Organisation des Nations Unies pour
l’Alimentation et l’Agriculture (FAO) depuis le début.
Compte tenu de la portée internationale de l’environnement
marin, le besoin d’établir une méthode et un langage communs pour être utilisés entre les experts des différents pays
partageant la pêche s’avère nécessaire. La formation de spécialistes pouvant faciliter les mesures coopératives au profit de toutes les parties concernées est sans aucun doute
le grand défi que le Master en Gestion Durable des Pêches
(auparavant intitulé Économie et Gestion des Pêches) veut
relever depuis 2004.
Dans cet article, nous décrivons les principaux thèmes qui ont
été abordés, en fournissant une brève description des activités de formation mises en œuvre et de leur influence.
ÍNDICE
238
International Master programme on Sustainable Fisheries
Management
Introduction
F
ishery resources are an excellent source of food as
well as a driver of job creation in the coastal areas.
According to the FAO, supply of fish for food from both
capture fisheries (marine and inland) and aquaculture currently provides more than 15% of the total supply of animal protein. Furthermore, international trade of seafood products has
once again reached a maximum level, with an annual growth
rate of 5% in the past decade. These statistics meanwhile,
serve to highlight concern for the rise in fishing pressure that
leads to the increasing number of overexploited and depleted stocks as well as recovering fishery resources (Hutchings,
2000; Jackson et al. 2001; Pauly et al. 2002)
Great changes have been taking place in the fishing sector in
recent times, including: (i) growing demand and high fish prices that are stimulating the increase in fishing effort; (ii) global
technological advances that are affecting the structure of the
fleets and their fishing capacity; (iii) protection of the environment, which, as in other sectors, has become a priority; and
(iv) growing importance of the international scope of fisheries.
The exploitation and management of fisheries has been in the
hands of the fishing communities, supervised by the national
administrations, until very recent times. But today, a new type
ÍNDICE
239
Bernardo Basurco, Ramón Franquesa &
José L. Sánchez Lizaso
of management is necessary, flexible enough to respond to
the evolution of the fishery resources, and to ensure stable
and sustainable long-term exploitation. Therefore, the administration and the fishing sector must be capable of interpreting
the reality of a situation, its probable evolution, and the repercussions that the implementation (or otherwise) of given
measures will have in the medium term, in the biological, social and economic frameworks.
In order to obtain and interpret management-supporting data,
experts that have a multidisciplinary background are needed,
covering diverse perspectives such as biology, economics,
sociology or law, allowing them to valuate and assess fishery
resources and to propose management measures through
different techniques, such as mathematical simulations, statistics, surveys, assessments or negotiation. Therefore, it is
of maximum interest to train these experts so they may advise stakeholders in the diverse world of fisheries: different
administrations (local, regional or state), fishermen (artisanal
or semi-industrial), social groups (shipowners, trade unions,
consumers, processors, fish farmers, etc.).
Furthermore, given the international scope of the marine environment, the need arises to establish a common method and
language to be used between experts of the different coun-
ÍNDICE
240
International Master programme on Sustainable Fisheries
Management
tries sharing fisheries. To train specialists, that can, from their
respective countries, contribute to facilitating the search for
cooperative measures that may benefit all stakeholders, is,
undoubtedly, the great challenge for the future.
The International Centre for Advanced Mediterranean Agronomic Studies is an intergovernmental organization created
in 1962 under the auspices of the Council of Europe and the
OECD. Its mission is to develop cooperation between Mediterranean countries through postgraduate training and promotion of cooperative research in the field of agriculture and natural resources. The Centre has 4 Mediterranean Agronomic
Institutes situated in Bari (Italy), Chania (Greece), Montpellier
(France) and Zaragoza (Spain). One of the five functional areas of Zaragona MAI is fisheries and aquaculture. A large part
of the activities are carried out in collaboration with numerous
national and international institutions of the Mediterranean region. They take place both at the IAMZ and in other centres
of Mediterranean countries. Of the numerous collaborations,
those established with following institutions are noteworthy
for their continuity and intensity: the European Commission
(EC), the Food and Agriculture Organization of the United Nations (FAO), the International Center for Agricultural Research
ÍNDICE
241
Bernardo Basurco, Ramón Franquesa &
José L. Sánchez Lizaso
in the Dry Areas (ICARDA) and the European Association for
Animal Production (EAAP).
Programme of the Master in Sustainable Fisheries
Management
CIHEAM Master programmes have a duration of two academic years (120 ECTS), aimed at young graduates and
professionals who wish to specialize and update their knowledge. The Masters are structured in two parts. The first part
(60 ECTS) consists of lectures, practical work, individual and
group work and technical visits. In the second part (60 ECTS),
individual work is carried out as an initiation to research or to
professional activity for 10 months on a given topic within the
speciality.
The objective of the Master in Sustainable Fisheries Management is to provide high level specialization in issues related to the economics and management of the fishing activity
through an analysis of the fishing system, exploitation mechanisms, marketing and management, with special emphasis
on the perspective of stock assessment and on the economic
interpretation of fishing issues in the Mediterranean, an area
which, due to its diversity of species and fleets and fragmented vessel ownership, requires management based on control
ÍNDICE
242
International Master programme on Sustainable Fisheries
Management
of the fishing effort. It offers a multi-disciplinary vision of sustainable fisheries management from the perspective of different sciences such as biology, economics, law and sociology.
The Master is at the present jointly organized by the University of Alicante (UA), the Spanish Ministry of Agriculture, Food
and Environment (MAGRAMA), through the General Secretariat of Fisheries (SGP) and the CIHEAM through the Mediterranean Agronomic Institute of Zaragoza. It is highlighted
that the Master was initially co-organized with the University
of Barcelona and also counted on the collaboration with the
former FAO Project CopMed II. Since 2004, when the programme started, six editions have been organized, with an
average of 17 participants per edition; that is a total of 102
participants from 24 countries. Table 1 indicates the distribution of participants. It is worth to remark the very high international component of the master, with more than 60 % of
students from abroad.
The Master enables participants to:
–– Make an analysis of the fishing system, exploitation mechanisms, marketing, evaluation and management, with special emphasis on the economic perspective and interpretation of fishing issues in the Mediterranean, an area which,
ÍNDICE
243
Bernardo Basurco, Ramón Franquesa &
José L. Sánchez Lizaso
due to its diversity of species and fleets and fragmented
vessel ownership, requires management based on control
of the fishing effort
–– Have a multi-disciplinary vision of fisheries management
from the perspective of different sciences, such as biology,
economics, law and sociology
–– Acquire experience in the use of new techniques and
methods for the development of a more efficient fisheries
management, adapted to the conditioning social and environmental factors
–– Be initiated into research, making a critical application
of the knowledge, skills and competence acquired in the
treatment of real problems related with the economics and
management of fishing activity
–– Exchange experiences and points of view, enhanced
through a programme developed in a highly international
and interprofessional context.
The programme of the first part of the Master includes the
following aspects:
ÍNDICE
244
International Master programme on Sustainable Fisheries
Management
• Introduction to the marine ecosystem, fishery resources
and aquaculture (6 ECTS)
Structure and characteristics of marine ecosystems; Fisheries ecology and biodiversity; Fishery resources (typology and
distribution of fishery resources; fishing exploitation and the
ecosystem approach); Introduction to aquaculture (the aquaculture enterprise: production and management systems; aquaculture and coastal zone management); Practical work and
case studies
• Statistical analysis and database use (5 ECTS)
Statistical analysis in fisheries research (statistical concepts
and tools; theory and practice of sampling); Uses of databases in fisheries (statistical data and information management;
application of Geographical Information Systems (GIS) to
fisheries; statistical services of FAO and other institutions);
Practical work: statistical analysis, use of databases and design of fisheries statistical systems
• Dynamics of exploited fish populations (5 ECTS)
Theoretical concepts; Recruitment, growth and mortality;
Selectivity; Biological functions for parameter estimation;
Catches and fishing effort; Standardization of fishing effort;
ÍNDICE
245
Bernardo Basurco, Ramón Franquesa &
José L. Sánchez Lizaso
Catchability, vulnerability and accessibility; Data sources for
population dynamics; Practical work: estimation of biological
parameters
• Theory and models for stock assessment (6 ECTS)
Analytical models; Virtual Population Analysis and yield-perrecruit models; Global models; Fisheries survey: swept area
and acoustic prospections; Difficulties in fisheries modelling:
the problem of interactions between fleets and multiple species; An ecological model: Ecopath (Ecological Pathways
Model); Obtaining data and parameters: market sampling,
VIT, etc.; Results and conclusions; Models as management
tools; Practical work: modelling exercises (VIT and Ecopath)
• Basic economics and production factors in fisheries
(4 ECTS)
Basic economics; Fisheries business activity. The fishing vessel and fishing technology (typology, records and control parameters; jobs and training requirements; fishing techniques
and gears; technological change and quantitative change);
Practical work: economic projections and business management strategies
ÍNDICE
246
International Master programme on Sustainable Fisheries
Management
• Fish trade and processing (4 ECTS)
The fish trade worldwide; World trade institutions; Fish trade
and marketing; The fishery production environment (fish processing; recreational activities; the economic context of fishing); Practical work: estimation of input-output tables in capture fisheries
• Theory and application of bioeconomic models and
economic and social indicators (6 ECTS)
Static and dynamic bioeconomic models. Typology; Estimation of effort and of economic parameters. Definition of control parameters; Mecon, a simple simulation model; Mefisto/
BEMMFISH, a complex model adapted to the Mediterranean;
Application of bioeconomic models; The role of indicators and
typology; Use of indicators in management; Practical work:
modelling exercises (BEMMFISH) and management proposals
• Institutional framework: cooperation and research
(4 ECTS)
International cooperation (objectives and cooperation management; regional, national and private cooperation projects);
Fisheries research (research policies and their application to
ÍNDICE
247
Bernardo Basurco, Ramón Franquesa &
José L. Sánchez Lizaso
fisheries management; research institutions and programmes;
research results and uses); The multidisciplinary approach, a
Mediterranean application; Practical work: design of a fisheries research campaign
• Maritime law and socio-cultural perspective (5 ECTS)
Maritime and fisheries law (worldwide legal framework; evolution of international law; international agreements). The historical perspective of the fishing communities. The socio-cultural
perspective; The socio-political perspective (associations and
representatives in the fishing sector; participation in management); Practical work and case studies
• Objectives and instruments for fishing policies (5 ECTS)
The sustainable development of fisheries; Technical measures and regulation instruments; Fishing control; Marine protected areas of fisheries interest; Regional Fishery Organizations (RFOs); The Common Fisheries Policy (CFP) of the
European Union; Practical work: analysis of regulation strategies
ÍNDICE
248
International Master programme on Sustainable Fisheries
Management
• Applied fisheries policies (5 ECTS)
Fisheries management in Spain; Fisheries management in
Morocco; Management of employment and social services;
Practical work: fishing policy planning project
• Institutional visits (5 ECTS)
Technical visits and seminars in government institutions, research centres, fishing organizations, processing industries
and markets
Lecturers in the first part of the Master
More than 67 lecturers from, among others, the Universities of: Alicante, A Coruña, Barcelona, Ege (Turkey), Girona,
Murcia, Politècnica de Catalunya, Politécnica de Valencia,
Santiago de Compostela, Vigo; Research centres: CSIC,
IEO, IFREMER-France, INRH-Morocco, IMARPE Peru; Public administrations in Spain: Centro Nacional de Formación
Marítima de Bamio, DG Pesca y Alimentación Gobierno de
Cantabria, Intecmar, ISM, SGP-MAGRAMA; International
organizations: CIHEAM-IAMZ, FAO, GFCM, ICCAT, NAFO,;
NGOs, firms and other private bodies: ANFACO, Fishermen’s
guilds, Grupo Calvo, Mercasa, MSC, Oceana, Probitec, Simrad, WWF-MedPO.
ÍNDICE
249
Bernardo Basurco, Ramón Franquesa &
José L. Sánchez Lizaso
Second part of the Master
During the second part of the Master, participants prepare the
Thesis required for being awarded the Master of Science Degree in a second academic year, upon submission of a work
protocol presented under the supervision of the thesis tutor.
The experimental work for the elaboration of the thesis will
be carried out in the organizing institutions or in collaborating
institutions, for a period of 10 months, under the direction of a
tutor who should be a doctor of renowned experience.
Results of the master programme indicates that more than 85
% of the student are working in subjects related with fisheries
management at Ministries (33%), Universities and Research
Institutions (42 %), NGOs (7%) or the private sector (7%).
ÍNDICE
250
International Master programme on Sustainable Fisheries
Management
References
HUTCHINGS, J.A. (2000) Collapse and recovery of marine fishes.
Nature 406, 882-885
JACKSON, J.B.C., Michael X. KIRBY, Wolfgang H. BERGER, Karen
A. BJORNDAL, Louis W. BOTSFORD, Bruce J. BOURQUE, Roger H. BRADBURY, Richard COOKE, Jon ERLANDSON, James
A. ESTES, Terence P. HUGHES, Susan KIDWELL, Carina B.
LANGE, Hunter S. LENIHAN, John M. PANDOLFI, Charles H.
PETERSON, Robert S. STENECK, Mia J. TEGNER, Robert R.
WARNER (2001) Historical overfishing and the recent collapse of
coastal ecosystems. Science 293, 629-638
PAULY, D., Villy CHRISTENSEN, Sylvie GUÉNETTE, Tony J.
PITCHER, U. Rashid SUMAILA, Carl J. WALTERS, R. WATSON,
Dirk ZELLER (2002) Towards sustainability in world fisheries. Nature 418, 689-695.
ÍNDICE
251
Bernardo Basurco, Ramón Franquesa &
José L. Sánchez Lizaso
Table 1: Distribution of participants per country
Germany
Algeria
Argentina
Brazil
Colombia
Ecuador
Egypt
The Savior
Spain
France
Guinea
Guinea-Bissau
Italy
Morocco
Mauritania
Mexico
Mozambique
Panama
Peru
Senegal
Seychelles
Tunisia
Turkey
Venezuela
Total
ÍNDICE
252
1
8
1
1
3
2
5
1
38
1
1
1
4
9
3
1
1
2
2
1
1
7
5
3
102