Biotecnología y bioingenieria en México
Transcripción
Biotecnología y bioingenieria en México
Biotecnología y Bioingeniería en Mexico: Experiencias y Oportunidades Marco Rito-Palomares Centro de Biotecnología-FEMSA Octubre, 2013 ¿Qué es la Biotecnología? Es la conjunción de disciplinas científicas y tecnológicas orientadas a la utilización de células vivas y/o sus componentes para la producción de bienes y servicios. Biotecnología en el tiempo • 1750 A.C. – Somerios utilizan levadura para obtener cerveza. • 1863 – Mendel descubre la transmisión de información de genes. • 1906 – El término genética es introducido. • 1919 – El término biotecnología es utilizado por primera vez. • 1928 – La Penicilina es descubierta. • 1953 – Watson y Crick descubren la estructura de doble hélice del DNA. El progreso rápido en Biotecnología inicia • • • • • 1960 – 1965 – 1966 – 1973 – 1981 – Primer antibiótico sintético. Fusión de celulas de ratón y humanas. Entendimiento del codigo genético. Desarrollo de la técnica de manipulación de genes. Primer animal transgénico. Biotecnología en los últimos 30 años 1983 – Producción comercial de insulina 1985 – Plantas modificadas genéticamente son probadas en campo. 1986 – Uso de microorganismos para la limpieza de derrames de aceite. 1988 – Primer patente de un animal alterado genéticamente – Ratón transgénico. 1997 – Clonación de la oveja Dolly. 2002 – Proyecto del genoma humano terminado. 2010 - Aplicaciones con células madres La nueva economía del siglo XXI Biotecnología es uno de los sectores de mayor crecimiento a nivel mundial Promueve la llamada nueva “economía basada en el conocimiento”. Áreas de aplicación de la Biotecnología – Salud: Medicamentos y vacunas. – Alimentos: Nutracéuticos y alimentos funcionales, probióticos. – Agricultura: Plantas y animales modificadas genéticamente más resistentes y rendidores bioreguladores y pesticidas. – Empaques: Envases plásticos biodegradables de almidón y otras fuentes. – Textil: Vestimentas faded de mezclilla y prendas de poliester. – Química: Pinturas, detergentes, cosméticos, elaboración de papel. Áreas de aplicación de la Biotecnología – – – – Fármacos: Bebidas: Combustibles: Medicina clínica: – Servicios: Vitaminas, antibióticos, enzimas. Fructosa y otros productos edulcorantes. Etanol y otros combustibles sofisticados. Diagnósticos rápidos y en línea para la identificación de enfermedades y agentes causantes. Sanidad, toxicología, inocuidad alimentaría, propagación masiva de plantas. Productos biotecnológicos Proteínas Hormonas Vacunas Antibióticos Aminoácidos Vitaminas Esteroides Enzimas Colorantes Aromas Productos biotecnologicos Tamaño de mercado y costo El costo de desarrollo de un producto biotecnológico es superior a los $100 millones solo en I&D, cuando se requieren pruebas clínicas. Resumen de ventas de Productos biotecnologicos La contribución total al mercado de este tipo de productos es del orden de billones de dólares Bioingeniería: Procesos Biotecnológicos Extra cellular concentration Primary recovery Production Purification Cell disruption Intracellular Purification cost is up to 85 % of total processing costs (Bio) Process technology Purification cost is up to 85 % of total processing costs Procesos biotecnológicos Insulina humana Paso Proceso 1 2 3 4 5-6 7 8 9 10 11-12 14 15 16 17 18 19 20 Flujo (Kg/dia) Fermentación Centrifugación Homogenización Centrifugación Solubilización/precipitación Centrifugación Degradación química Ultrafiltración Evaporación Solubilización/oxidación Intercambio aniónico Degradación enzimática Cromatografía HPLC Ultrafiltración Cristalización Centrifugación Evaporación Rendimiento total 11.16 11.10 10.99 10.93 8.20 8.16 7.75 7.71 7.48 5.61 5.33 5.06 3.54 3.52 3.17 3.15 3.13 Eficiencia (%) 100 99.5 99.0 99.5 75.0 99.5 95.0 99.5 97.0 75.0 95.0 95.0 70.0 99.5 90.0 99.5 99.5 28% Procesos biotecnológicos Hormona de crecimiento bovino Paso 1 2 3 4-5 6 7 8-9 10 11 12 13 14 15 16 Proceso Separación celular Ruptura celular Centrifugación Lavado/centrífuga Extracción Centrifugación Lavado/centrifugación Desnaturación/oxidación Centrifugación Ultrafiltración Filtración en gel(alim) Filtración en gel (elución) Diálisis (alim) Diálisis (dializado) Centrifugación Ultrafiltración Rendimiento total Volumen (L) 20 3X20 20 15 12 12 12 70 70 70 4 18 97 2640 97 97 Eficiencia (%) 98 98 98 98 100 98 98 100 92 95 47 72 72 100 19% Áreas de oportunidad para desarrollo de Procesos Biotecnológicos Reducción del número de etapas Optimización de procesos (técnicas novedosas) Integración de procesos Experiencias y Oportunidades Experiencias y Oportunidades Bioproducts from Algae Development of a prototype ATPS process for c-phycocyanin recovery from Spirulina maxima Spirulina maxima (Arthrospira) • Cyanobacteria • Photosynthetic system • Optimal temperature and pH for cultivation 35°C and 8-11, respectively • Growth easily in high content of sodium carbonate Uses for c-phycocyanin (CPC) Colorant for food products. Colorant for cosmetics. Lab reagent. Cells coloring Commercial value of c-phycocyanin C-phycocyanin food grade $ 130 USD / g C-phycocyanin reagent grade $ 1000-5000 USD / g C-phycocyanin highly purified $ 15,000 USD / g Existing protocols for the recovery of cphycocyanin produced by Spirulina maxima Fermentation (Spirulina maxima) Gel filtration Harvesting Dialysis Drying Precipitation Cell disruption Adsorption CaCl2 Extraction Centrifugation Existing protocols for the recovery of cphycocyanin produced by Spirulina maxima The maximum purity of the product is not reached. Excessive number of unit operations. Low product recovery. Difficult to scale up. An alternative approach is needed Fermentation S. maxima concentration (0.26 g/L dry weight) Fermentation conditions: Temperature 30 - 35 ° C CO 2 y air supplied Culture media composition H2O NaCl CaCl2 Na2SO4 FeSO4 KNO3 MgSO4 NaHCO3 K2HPO4 4.00 L 4.00 g 0.16 g 8.32 g 0.04 g 8.00 g 0.83 g 36.0 g 2.00 g Process development for the recovery of cphycocyanin produced by Spirulina maxima Model systems Effect of TLL Effect of volume ratio Effect of MW of PEG Prototype process for the recovery of cphycocyanin produced by Spirulina maxima Fermentation (Spirulina maxima) Cell disruption 1st ATPS Extraction PEG + Salt 2nd ATPS Extraction Ultrafiltration PEG and contaminants PEG + Salt Concentrate Contaminants Contaminants Highly purified CPC Product yield 28% Commercial value: $15,000 USD/g Precipitation C-phycocyanin Prototype process for the recovery of cphycocyanin produced by Spirulina maxima A prototype process for B-phycoerythrin purification from Porphyridium cruentum B-phycoerythrin (BPE) • B-phycoerythrin, a pink-coloured protein. • Produced by red algae as accessory pigment. • The commercial value of highly purified Bphycoerythrin (> 4, defined as the relationship of 545 – 280 nm absorbances) for pharmaceutical or fluorescent uses can be more than US$ 50/mg. A prototype process for B-phycoerythrin purification from Porphyridium cruentum BPE applications • Pigment for food industry • Pigment for cosmetic industry • Pharmaceutics • Fluorescent marker Improved recovery of B-phycoerythrin produced by the red microalga Porphyridium cruentum Develop a process to further increase the purity of BPE above 4.0 (A545nm/A280nm) BPE recovery (%) Purity of BPE (A545nm/A280nm) Recovery of natural colorants from microbial origin: B-phycerythrin BPE System pH A patent granted Recovery of natural colorants from microbial origin: Bphycerythrin BPE A pilot plant for the validation of this prototype process has been established. Scaling up of the prototype process for the purification of BPE Scale up from 10mL to 8.5Lts (850X extraction system) Scaling up of the prototype process for the purification of BPE Preliminary economic analysis $ 1.17 US/mg highly purified BPE Considering raw material, reagents and energy requirements Carotenoids bioproducts from Algae Lutein produced by Chlorella protothecoides Carotenoid (xanthophyll) Low molecular weight hydrophobic compound Proven benefits for human health Found in vegetables, flowers, algae, etc Chlorella protothecoides – Sweet water algae Commonly used for heterotrophic production of lutein Interesting study case for ATPS Recuperacion de Luteina Efficient Extraction and Harvesting of Cyanobacterial Products by TwoPhase Separation Lutein & Carotene Recovery of lutein produced by Chlorella protothecoides Experience on process development for particulate purification Extractive fermentation Proteins from plants New devices Experience on plant based bioprocess development Plantas como sistemas productores The most common used plants for biopharmaceuticals production are: tobacco, maize, soybean, and alfalfa. Challenge: -- High concentration of contaminant proteins -- Amount of target protein Limitations: -- Low yields. -- Inconsistent product quality. -- COMPLEXITY OF HOST PROTEOME A recent model protein: rhG-CSF • Human Granulocyte-Colony Stimulating Factor (hG-CSF) A glycoprotein which stimulates granulocyte colony formation acting on hematopoietic cells • Application: – – – – – Treatment of neutropenia in cancer therapy: leukemia Bone marrow trasplant, BMT HIV-associated neutrophil defects USD$800 /mg aprox. USD $250 per single dose rhG-CSF • It has been expressed in: bacteria (E. coli), conventional yeast, mammalian cells, and plants (tomato and tobacco). Production (bioreactor) Recovery and primary purification Purification General Bioprocess Diagram A successful plant-based production system will be a frequently used technology when an easy and cheap purification process is applied. Available product from E. coli Recuperación del producto 1 Protein Extraction Buffer Tris-Borate-EDTA, pH 8 Model protein rhG-CSF 2 3 4 1. 2. 3. 4. Molecular marker Alfalfa/rhG-CSF Upper phase rhG-CSF ATPS Target product Gel SDSPAGE & MS Vr = 1, pH 7, Phosphate salts 1 2 3 4 1. 2. 3. 4. Molecular marker Alfalfa/rhG-CSF Bottom phase rhG-CSF Modificación de Farmacos PEGylation of therapeutic proteins Improved clinical properties: Better physical and thermal stability Protection against susceptibility to enzymatic degradation Increased solubility Longer in vivo circulation Approved for human use by the U.S. Food and Drug Administration Greenwald et al, 2003 PEGylation reaction PEGylation is a reaction in which at least one chain of polyethylene glycol (PEG) is attached to a molecule or protein without changes in its properties. Protein mPEG Model Proteins a - Lactalbumin Ribonuclease A Obtained from bovine pancreas. Present in mammal milk whey. MW: 13,686 Da. MW: 14,176 Da. 124 amino acid residues. 126 amino acid residues. Antitumoral properties. Antitumoral properties. Products from the PEGylation reaction Three resulting species are reported for the PEGylation reactions of both model proteins: Native Protein mono-PEGylated Protein di-PEGylated Protein The mono-PEGylated protein in both models presents the best biological activity. Separation of PEGylated proteins • Two basic challenges: – the separation of PEG-proteins from other reaction products. – the sub-fractionation of PEG-proteins. Separation of PEGylated proteins Absorbance 210 nm (mAU) 1200 mono PEGR Nase A 1000 800 600 diPEG RNase A 400 200 0 0 50 100 150 Volume (mL) 200 Native RNase A 250 300 Experiencias en el desarrollo de procesos para recuperar bioparticulas Rotavirus-like particles primary recovery from insect cells Virus like-particles (VLP) are composed of the main structural proteins of a virus, but lack its genetic material. They are produced by the recombinant expression of the structural proteins Applications: vaccination, biosensors, nanomaterials. VP6 VP2 Double layered rotavirus-like particles (dlRLP) Consist of two concentric protein layers. VP6 VP2 The inner layer is formed by protein VP2, while the outer layer is formed by protein VP6. dlRLP induce immune response to treat acute gastroenteritis*. *Annually, more than 500,000 children die as victims of acute gastroenteritis caused by rotavirus (Kirkburk and Buttery, 2003). Rotavirus-like particles primary recovery from insect cells Insect cell culture Centrifugation Extra cellular dlRLP Sucrose cushion CsCl gradient Ultrafiltration 2% dlRLP recovery 90% dlRLP purity 45 purification factor Insect cell culture Biomass Biomass Centrifugation Cell disruption Extra cellular dlRLP ATPS extraction Intracellular dlRLP Ultrafiltration 85% dlRLP recovery 90% dlRLP purity 30 - 55 purification factor Strategies for the potential recovery and purification of stem cells Background Background STEM CELLS replace diseased damagedcells dead Stop / Reverse Disease s Objective Develop a scalable and novel bioengineering strategy for the potential recovery and purification of stem cells. Unique, fast, economic and scalable bioprocess. Exploiting non-conventional technologies as Aqueous Two-Phase Systems (ATPS). Allowing manipulation of high quantities of sample, reducing losses and processing times. Production Primary recovery Purification Methodology: model system Experimental Matrix Measurement system Human umbilical cord blood Flow Cytometry employing specific stem cell marker (CD133 antibody) and 7AAD for viability. Lymphoprep Sample rich in CD133+ stem cells used in ATPS PUBLISHED ARTICLE: González-González, M., and M. Rito-Palomares, 2013, Aqueous two-phase systems strategies to establish novel bioprocesses for stem cells recovery: Critical Reviews in Biotechnology, p. 1-10. Strategy II. Immunoaffinity ATPS • PEGylated antibody 1) DEX 70,000-Ficoll 400,000 2) DEX 10,000-PEG 10,000 Phases formation PEGylated CD133 antibody cells addition into ATPS and Release of stem cells CD133+ Purified CD133+ stem cells Comentarios y mensaje final Biotecnología en México Áreas Enfoque Generación de Transferencia de conocimiento Universidades VS tecnología Industria Comentarios y mensaje final La Biotecnología establece una plataforma que nos permite soñar. Es importante que esos sueños se conviertan en metas, para impactar la calidad de vida. Imaginar i 4 = Investigar Innovar Incubar Research Group Members Prof. Marco A. Rito-Palomares Chair Director SNI III AMC Member Line: Bioprocesses and Purification Post-doc at Cambridge University Ph.D. At Birmingham University Dr. Jorge Benavides Lozano Dr. Alejandro Aguilar Jiménez Researcher - Professor Researcher - Professor Line: Bioprocesses and Purification Ph.D. At Tecnológico de Monterrey • • Line: Recovery and Purification Ph.D. At Tecnológico de Monterrey Dr. Daniel Jacobo Velázquez Dr. José Manuel Aguilar Yáñez Researcher - Professor Researcher - Professor Line: Purification of Nutraceuticals Line: Molecular Biology Ph.D. At Texas A&M Ph.D. At Tecnológico de Monterrey Dr. Karla Mayolo Deloisa Dr. José González Valdez Post-doc Ph.D. At Tecnológico de Monterrey Ph.D. Students • • • • • • • • • • • José Arquímedes Echanove Juan Andrés Enrique Ramos Tomás Juan Aguirre González Edgar Acuña González Post-doc Post-doc Ph.D. At Tecnológico de Monterrey Ph.D. At Tecnológico de Monterrey Master Students Jesús Simental Martínez Celeste Ibarra Herrera Federico Ruiz Ruiz Patricia Vázquez Villegas Juan Carlos Sánchez Rangel Marco Mata Gómez Alma Gómez Loredo Edith Espitia Saloma Mario Antonio Torres Acosta Luis Alberto Mejía Manzano Agustín Hernández Martínez Support Professionals Dra. Mirna González • • • • • Ana Mariel Torres Contreras Alejandro Becerra Luis Rodolfo Chavez Castillo Cesar Ivan Ortiz Alcaraz Daniel Villarreal Garcia Collaborations • • • • • • • University College London (U.K.) Carnegie Mellon University (U.S.A.) Instituto Superior Tecnico (Portugal) University of Chile (Chile) University of Houston (U.S.A.) University of British Columbia (Canada) Jacobs University-Bremen (Germany) Thanks for your attention Questions