5th Workshop of Computational Chemistry and Molecular
Transcripción
5th Workshop of Computational Chemistry and Molecular
Facultad de Ecología y Recursos Naturales Doctorado en Fisicoquímica Molecular 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006 Balneario Banco Central Punta de Tralca, Chile www.unab.cl/workshop 3th Workshop of Computational Chemistry and Molecular Spectroscopy October 23 – 25, 2002, Olmué, V Región, Chile Cover: Relativistic Fukui function of Re6S8Cl64-. 4th Workshop of Computational Chemistry and Molecular Spectroscopy October 19 – 22, 2004, Balneario Banco Central, Punta de Tralca, Chile Cover: ELF of Cu7 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17 – 20, 2006, Balneario Banco Central, Punta de Tralca, Chile Cover: Dirac spin density of the luminescent Re6S8Cl63- cluster. 5th. Workshop of Computational Chemistry and Molecular Spectroscopy October 17 – 20, 2006 Balneario Banco Central, Punta de Tralca, Chile Isidoro Dubornais S/N°, El Quisco V Región Telephone: (56)-35- 47 1010 - Fax: 56-35- 47 1398 [email protected] P re fa ce PREFACE The Workshop of Computational Chemistry and Molecular Spectroscopy is an academic activity organized every two years by the Ph.D. Program in Molecular Physical Chemistry** of the Universidad Andrés Bello. Is a traditional scientific meeting that seeks to enhance the academic interactions between recognized researchers and graduate students enrolled in several doctoral programs of Chilean Universities. During this 5th version we will discuss recent advances in quantum molecular sciences and molecular dynamics on topics of material science, molecular magnetism and electronics, crystal and molecular engineering, nanotubes and functional polymers, nanotechnology, electronic structure and reactivity of molecular precursors, and protein-membrane simulations. We are grateful to all participants for their significant contributions that made this 5th Workshop of Computational Chemistry and Molecular Spectroscopy possible. Our gratitude also goes to our sponsors and to the Universidad Andrés Bello for their support. Ramiro Arratia-Perez Chairman, Organizing Committee * The Ph.D. program in Molecular Physical Chemistry of the Universidad Andres Bello has been accredited by government commissions (CONAP) on May 2006. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 1 J.J. Thomson The Nobel Prize in Physics 1906 Joseph John Thomson was born in Cheetham Hill, a suburb of Manchester on December 18, 1856. He enrolled at Owens College, Manchester, in 1870, and in 1876 entered Trinity College, Cambridge as a minor scholar. He became a Fellow of Trinity College in 1880, when he was Second Wrangler and Second Smith's Prizeman, and he remained a member of the College for the rest of his life, becoming Lecturer in 1883 and Master in 1918. He was Cavendish Professor of Experimental Physics at Cambridge, where he succeeded Lord Rayleigh, from 1884 to 1918 and Honorary Professor of Physics, Cambridge and Royal Institution, London. Thomson's early interest in atomic structure was reflected in his Treatise on the Motion of Vortex Rings which won him the Adams Prize in 1884. His Application of Dynamics to Physics and Chemistry appeared in 1886, and in 1892 he had his Notes on Recent Researches in Electricity and Magnetism published. This latter work covered results obtained subsequent to the appearance of James Clerk Maxwell's famous "Treatise" and it is often referred to as "the third volume of Maxwell". Thomson cooperated with Professor J. H. Poynting in a fourvolume textbook of physics, Properties of Matter and in 1895 he produced Elements of the Mathematical Theory of Electricity and Magnetism, the 5th edition of which appeared in 1921. In 1896, Thomson visited America to give a course of four lectures, which summarised his current researches, at Princeton. These lectures were subsequently published as Discharge of Electricity through Gases (1897). On his return from America, he achieved the most brilliant work of his life - an original study of cathode rays culminating in the discovery of the electron, which was announced during the course of his evening lecture to the Royal Institution on Friday, April 30, 1897. His book, Conduction of Electricity through Gases, published in 1903 was described by Lord Rayleigh as a review of "Thomson's great days at the Cavendish Laboratory". A later edition, written in collaboration with his son, George, appeared in two volumes (1928 and 1933). Thomson returned to America in 1904 to deliver six lectures on electricity and matter at Yale University. They contained some important suggestions as to the structure of the atom. He discovered a method for separating different kinds of atoms and molecules by the use of positive rays, an idea developed by Aston, Dempster and others towards the discovery of many isotopes. In addition to those just mentioned, he wrote the books, The Structure of Light (1907), The Corpuscular Theory of Matter (1907), Rays of Positive Electricity (1913), The Electron in Chemistry (1923) and his autobiography, Recollections and Reflections (1936), among many other publications. Thomson, a recipient of the Order of Merit, was knighted in 1908. He was elected Fellow of the Royal Society in 1884 and was President during 1916-1920; he received the Royal and Hughes Medals in 1894 and 1902, and the Copley Medal in 1914. He was awarded the Hodgkins Medal (Smithsonian Institute, Washington) in 1902; the Franklin Medal and Scott Medal (Philadelphia), 1923; the Mascart Medal (Paris), 1927; the Dalton Medal (Manchester), 1931; and the Faraday Medal (Institute of Civil Engineers) in 1938. He was President of the British Association in 1909 (and of Section A in 1896 and 1931) and he held honorary doctorate degrees from the Universities of Oxford, Dublin, London, Victoria, Columbia, Cambridge, Durham, Birmingham, Göttingen, Leeds, Oslo, Sorbonne, Edinburgh, Reading, Princeton, Glasgow, Johns Hopkins, Aberdeen, Athens, Cracow and Philadelphia. In 1890, he married Rose Elisabeth, daughter of Sir George E. Paget, K.C.B. They had one son, now Sir George Paget Thomson, Emeritus Professor of Physics at London University, who was awarded the Nobel Prize for Physics in 1937, and one daughter. From Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967 This autobiography/biography was first published in the book series Les Prix Nobel. It was later edited and republished in Nobel Lectures. To cite this document, always state the source as shown above. For more updated biographical information, see: Thomson, Joseph John, Recollections and Reflections. G. Bell and Sons: London, 1936. J.J. Thomson died on August 30, 1940. Copyright © The Nobel Foundation 1906 5h Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 2 Sponsors SPONSORS UNIVERSIDAD ANDRÉS BELLO Facultad de Ecología y Recursos Naturales Vicerrectoría de Investigación y Postgrado Vicerrectoría Académica www.unab.cl SUDELAB Lira 1396 Fono: (56-2) 555 94 87 Fax: (56-2) 554 00 10 Santiago, Chile [email protected] IVENS S.A. Av. Los Leones 3028 , Phone: (56-2) 204 40 05 Fax: (56-2) 209 13 14 - (56-2) 209 29 43 Ñuñoa, Santiago, Chile [email protected] SOCIEDAD CHILENA DE QUÍMICA Universidad de Concepción Concepción, Chile www.schq.cl INICIATIVA CIENTÍFICA MILENIO Núcleo De Mecánica Cuántica Aplicada y Química Computacional www.nucleomileniocuantica.cl 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 3 Program TUESDAY, OCTOBER 17 MORNING 8:45 10:30 – 11:30 Bus to Punta de Tralca: República 252 Registration 60 min. 11:30 – 12:30 Opening Ceremony Academic Vice rector Rolando Kelly J. Universidad Andrés Bello 60 min. 13:00 – 15:00 AFTERNOON 15:00 – 15:30 Setting up Posters 30 min. 15:30 – 16:15 Plenary Lecture 1 Chemical Quantum Diabatic States Approach as Complementary to Adiabatic BO procedures: On the he role of spin-orbit interaction in chemical dynamics and reaction mechanisms O. Tapia, Uppsala University, Sweden 10 45 min. 16:15 – 16:25 Discussion 16:25 – 16:45 16:45 – 17:05 Oral 1 Inclusion of oligomers in PHTP nanochannels. Conformational and spectroscopic aspects using ONIOM and time dependent methodologies. Sergio O. Vásquez A., Universidad de Chile. 17 20 min. 17:05 – 17:25 Oral 2 Rationalization of Charge Transfer Mechanisms Involving Porphyrin Derivatives Metal Complexes Gloria I. Cárdenas-Jirón, University of Santiago de Chile. 18 20 min. 17:30 – 19:30 Poster Presentation 90 min. 20:00 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 4 Program WEDNESDAY, OCTOBER 18 MORNING 7:00 – 8:30 9:00 – 9:45 Plenary Lecture 2 Pentalene and Acepentalene Coordination to Transition Metals: a DFT analysis Jean-Yves Saillard, Université de Rennes, France 11 45 min. 9:45 – 9:55 Discussion 10:00 – 10:20 10:20 – 10:40 Oral 3 Density Functional Theory Studies on Ferrocenyl-Diimine Complexes Mauricio Fuentealba, Universidad de Chile, Chile 19 20 min. 10:40 – 11:00 Oral 4 Multiplicity changes in atoms under pressure Doris Guerra, Universidad Andrés Bello, Chile 20 20 min. 11:00 – 11:20 11:20 – 11:40 Oral 5 Effect of Ni(II), Cu(II) and Zn(II) Association on the keto-enol Tautomerism of Thymine Elizabeth Rincón B., Pontificia Universidad Católica de Chile 21 20 min. 11:40 – 12:00 Oral 6 Theoretical Study of Aromatic Transition State and the Α-Effect Paula Jaramillo, Universidad Andrés Bello, Chile 22 20 min. 13:00 – 15:00 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 5 Program WEDNESDAY, OCTOBER 18 AFTERNOON 15:00 – 15:45 Plenary Lecture 3 The Many Faces of the Materials Chemistry and Physics of the OrganicInorganic Interface Patrick Batail, CNRS-Université d’Angers. 12 45 min. 15:45 – 15:55 Discussion 15:55 – 16:15 Oral 7 Theoretical Study on the Electronic Spectrum of Bi- and Tri-nuclear Pt(II)-Au(I), Pt(II)-Ag(I), Pt(II)-Pt(II) and Pt(II)-Pd/II) Complexes Fernando Mendizabal, Universidad de Chile, Chile 23 20 min. 16:25 – 16:45 16:45 – 17:05 Oral 8 24 A Molecular Model Potential Study of Molecular Wires Ricardo Letelier D., Universidad de Chile 20 min. 17:05 – 17:25 Oral 9 25 Orbital Hardness in Single Monoatomic Anions Mauricio Barrera, Pontificia Universidad Católica de Chile 20 min. 17:30 – 19:30 Poster Presentation 90 min. 20:00 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 6 Program THURSDAY, OCTOBER 19 MORNING 7:00 – 8:30 9:00 – 9:45 Plenary Lecture 4 Ab initio calculations optical properties including e-h correlations Niels E. Christensen, University of Aarhus, Denmark 13 45 min. 9:45 – 9:55 Discussion 10:20 – 10:40 Oral 10 Fe adatoms along Bi nanolines on H/Si(001): Patterning atomic magnetic chains Walter Orellana, Universidad de Chile, Chile 20 min. 26 10:40 – 11:00 Oral 11 Procrustes analysis in the study of geometrical similarity effects Verónica Jiménez, Universidad de Concepción, Chile 20 min. 27 11:20 – 12:05 Plenary Lecture 5 Molecular assembly and templating for nanotechnology Werner J. Blau, Trinity College, Dublin, Ireland. 45 min. 14 12:05 – 12:15 Discussion 11:00 – 11:20 AFTERNOON 14:45 – 20:00 Free Time 20:00 – 22:00 22:30 Social ♫♪ 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 7 Program FRIDAY, OCTOBER 20 MORNING 7:00 – 8:30 9:00 – 9:45 Plenary Lecture 6 Simulación Molecular de Proteínas Transmembranales Fernando Danilo Gonzalez-Nilo, Universidad de Talca 15 45 min. 9:45 – 9:55 Discussion 10:00 – 10:20 10:20 – 10:40 Oral 12 Simulación Molecular de la Interacción entre PIP2 y el canal TRPV1. (Molecular simulation of the PIP2-TRPV1 channel interaction.) C. Mascayano, Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Chile 28 20 min. 10:40 – 11:00 Oral 13 Análisis Estructural del Poro del Canal de K+ HSLO a Través de Simulaciones de Dinámica Molecular. W. González, Universidad de Talca, Chile 29 20 min. 11:00 – 11:20 Oral 14 NMR and Molecular Modeling studies of cyclodextrin-catechin complexes Carolina Jullian, Universidad de Chile 30 20 min. 11:20 – 11:40 Round Table and Discussions 12:00 – 13:00 Poster withdrawal 13:00 – 14:30 15:00 RETURN TO SANTIAGO 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 8 PLENARY LECTURES 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 9 Plenary Lecture 1 Chemical Quantum Diabatic States Approach as Complementary to Adiabatic BO procedures: On the he role of spin-orbit interaction in chemical dynamics and reaction mechanisms O. Tapia Department of Physical and Analytical Chemistry, Uppsala University, Box 579. S-751 23 Uppsala, Sweden In this work we explore a possibility offered by Pauli Hamiltonian to study chemical reactions in a way complementary to the semi-classical Born-Oppenheimer (BO) approach. This operator is the sum of the Coulomb Hamiltonian, HC and spin orbit interaction operator, HSOI. First we examine the theory without electronuclear separability. Thereafter, separability leads to electronic Hamiltonians that are incommensurate to HC; this fact is carefully examined. The result is a better understanding concerning the complementarity between diabatic and adiabatic approaches; they are just models not approximations to the exact problem. The diabatic model still permits electronic quantum states so that the linear superposition principle holds. Reaction coordinate in real space of nuclear positions can be defined as usual. Chemical mechanisms incorporate singlet and triplet excited states to help untangle covalent states thereby coupling reactant and product closed shell channels. This corresponds to a four-state description with fully diabatic potential energy functions. A secular equation incorporating HSOI in the 4-state base set for each relevant value of the reaction coordinate lead to quantum mechanical description of the chemical change. The scheme is well adapted to study Jahn-Teller effects. The connections to BO scheme are surprising. The energy expectation value with the lowest energy root along the reaction path is just a BO-like potential energy function. It turns out that both methods can be used in complementary ways. On the one hand, conic intersections are defused as problem but are given a guiding property to find out bottleneck regions. On the other hand, use of present day computer technology can be adapted to examine diabatic processes. A generalized Marcus-like scheme obtains. Numerical examples will be discussed. We will all gain by using these models in an intelligent manner dictated by the problems at hand. References Arteca, G., Tapia, O.; 2005, J. Math.Chem. 37, 389-408 Tapia, O., Polo, V., Andres, J.; 2006, in Recent Advances in the Theory of Chemical and Physica Systems, pp. 177-196, Julien, J.-P. et al. (Editors) Springer Tapia, O.; 2006, J.Math.Chem. ISSN: 0259-9791 (Paper) 1572-8897 (Online). DOI: 10.1007/s10910-005-9012-6 Acknowledgments O. T. thanks the Millennium Nucleus for Applied Quantum Mechanics and Computational Chemistry, Grant No. P02-004-F (MIDEPLAN-CONICYT, Chile) for inviting him to Chile. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 10 Plenary Lecture 2 Pentalene and Acepentalene Coordination to Transition Metals: a DFT analysis J.-Y. Saillard UMR 6226 Sciences Chimiques de Rennes, Université de Rennes 1, 35042 Rennes Cedex, France. DFT calculations have been carried out on a series of real1 and hypothetical compounds of the type CpM(pn), (CO)3M(pn), M(pn)2, (CpM)2(pn), [(CO)3M]2(pn) and M2(pn)2 (M = transition metal, pn = pentalene). A rationalization of the bonding in all the already known compounds is provided, as well as in (so far) hypothetical stable complexes.2 Depending on the electron count and the nature of the metal(s), the η2 (predicted), η3, η5, η9 or intermediate coordination modes can be adopted. In the case of the mononuclear species, the most favored closed-shell electron counts are 18 and 16 metal valence electrons (MVE). In the case of dinuclear species, it is 34 MVE’s. However, other electron counts can be stabilized, especially in the case of dinuclear complexes. Fe(C8H6)2 (CpV)2(C8H6) Rh2(C8H6)2 Calculations carried out on a related series of complexes of acepentalene3 predict that the unstable acepentalene molecule can be stabilized by complexation to one, two (similarly to pentalene) and even three metal centers, giving rise to compounds which should be isolable. (CpFe)2(C10H6) 1 2 3 Zr(C10H6)2 [Nb3(C10H6)2]+ F. G. N. Cloke, Pure Appl. Chem. 2001, 73, 233-238. S. Bendjaballah, S. Kahlal, K. Costuas, E. Bévillon, J.-Y. Saillard, Chem. Eur. J. 2006, 12, 2048-2065 A. de Meijere, R. Haag, F.-M. Schüngel, S. I. Kozhushkov, I. Emme, Pure & Appl. Chem. 1999, 71, 253-264 . 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 11 Plenary Lecture 3 The Many Faces of the Materials Chemistry and Physics of the OrganicInorganic Interface Patrick Batail Laboratoire Chimie, Ingénierie Moléculaire et Matériaux (CIMMA), UMR 6200 CNRS-Université d’Angers. UFR Sciences, 2 Boulevard Lavoisier, 49045 Angers, France. [email protected] This contribution to the 5th Worshop of Computational Chemistry and Molecular Spectroscopy is about how the chemistry and physics of anisotropic, weak intermolecular interactions act in unison in low dimensional hybrid organic-inorganic solids. The talk will focus on a solid state chemist approach of current dimensionality issues in molecular solids supporting strongly correlated electronic systems. An attempt at formulating molecular materials chemistry targets in response to the perception of current theoretical dreams in the rich physics of systems of strongly correlated electrons in one-dimension will be presented. These include the engineering of crystals where interdependence of redox state and hydrogen bonding within self-complementary motifs, are coupled to collective electronic instabilities, molecular motion, and charge localization. In addition, this approach will be extended to reach out toward the issue of field effects in monomolecular πfunctional nano-(meso) wires, and over to the new field of mineral liquid crystals and mesophases obtained by auto-assembly of nanostructured covalent mineral objects. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 12 Plenary Lecture 4 Ab initio calculations optical properties including e-h correlations Niels Egede Christensen and Robert Laskowski* Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark. Electronic structure calculations based on the density-functional theory, even in the local approximations (LDA, GGA) have been very successful in describing many physical properties of solids in the past, even dielectric and optical properties (in some cases only after some corrections (GW and other corrections to energy gaps)). We shall demonstrate this by comparing absorption spectra derived from such effective one-electron theories to experimental data. However, theories of optical excitations in solids, which are based on such standard band-structure calculations omit essential interactions, in particular the correlations between the photoexcited electron and the hole. This e-h correlation influences the states in the gaps of semiconductors (excitons) as well as spectral positions and intensities in the continuum regime. We discuss here calculations, which estimate these effects in three semiconductors, GaN, ZnO, and AlN by solving the Bethe-Salpeter Equation (BSE) [1] using the density functional theory as a starting point. Although these compounds crystallize in the same hexagonal (wurtzite) structure there are differences in their band structures, which influence the excitonic effects. The relative energies of the uppermost three states at the valence band maximum (VBM) result from the combined action of the crystal field splitting (CFS) and the spin-orbit coupling (SOC). The SOC is positive at the VBM of GaN and AlN, negative in ZnO. The CFS is positive in GaN and ZnO, but negative (and large in magnitude) in AlN. A calculation of the full spectra by a diagonalization of the BSE Hamiltonian is not practical, and instead we use a time evolution algorithm [2]. The exciton states in the gaps are calculated directly by taking advantage of the short range in k-space of these exciton wavefunctions. We discuss mainly exciton binding energies, their dependences on structural parameters and the effects of the differences in VBM states in the three compounds. For AlN we further examine the hydrogen-atom like model for excited exciton states [3]. Finally some recent calculations on the pressure dependence of excitons in AlN will be presented. Some of the results obtained so far have been described in Refs. [4,5,6] * Present address: Inst. of Materials Chemistry, Technical University of Vienna, Austria. [1] [2] [3] [4] [5] [6] L.J. Sham and T.M. Rice, Phys. Rev. 144, 708 (1966). W.G. Schmidt, S. Glutsch, P.H. Hahn, and F. Bechstedt, Phys. Rev. B 67, 85307 (2003). R.J. Elliott, Phys. Rev. 108, 1384 (1957) R. Laskowski, N.E. Christensen, G. Santi, and C. Ambrosch-Draxl, Phys. Rev. B 72, 035204 (2005). R. Laskowski and N.E. Christensen, Phys. Rev. B 73, 045201 (2006), PRB 74, 077203 (2006). R. Laskowski and N.E. Christensen, physica status solidi (b), accepted (2006). 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 13 Plenary Lecture 5 Molecular Assembly and Templating for Nanotechnology Werner J. Blau School of Physics, Trinity College, Dublin, Ireland. [email protected] On a molecular scale, the accurate and controlled application of intermolecular forces can lead to new, previously unachievable, nanostructures. This is why molecular self-assembly (MSA) is a highly topical and promising field of research in nanotechnology today. MSA encompasses all structures formed by molecules selectively binding to a molecular site without external influence. With many complex examples all around us in nature (ourselves included), MSA is a widely observed phenomenon that has yet to be fully understood. Being more a physical principle than a single quantifiable property, it appears in physics, chemistry, and biochemistry, and is therefore truly interdisciplinary. The problem to date with researching the fundamental physics behind MSAs has tended to be that prime examples of MSAs are mainly found in the biological sciences. Biomolecular assemblies, such as light harvesting antenna complexes found in some bacteria, are sophisticated and often hard to isolate, making systematic and progressive analyses of their fundamental physics very difficult. What in fact are needed are simpler MSAs, the constituent molecules of which can be readily synthesized by chemists to a high degree of purity, high-quality sample preparation, chemical purity, and known sample history that are paramount in MSA research. These molecules should self-assemble into simpler constructs that can be easily assessed with current experimental techniques. At present, there is a huge global research effort targeted at carbon nanotubes. These structures are being investigated for applications ranging from actuators to reinforcement agents, nanoelectronic devices to controlled drug-release agents—with each application requiring a different, precisely defined physical and/or electronic structure. A major drawback of carbon nanotubes, however, is our apparent lack of structural control, which arises because they are formed by either a gas-phase or a plasma process. MSA and nanotemplating appear to open alternative routes to more controlled monodisperse structures. In this lecture, I will summarise some of our approaches to address these issues and give both experimental and simulation results. Particular examples will include • Using nanoporous templates such as porous Alumina membranes to create various inorganic and polymeric nanowire structures. • Templated assembly of molecules on Carbon Nanotubes to create new photonic and electronic materials and solubilize the template • Controlled self-assembly of functionalised discotic molecules to for MSE nanowires Demonstrating that synthetic molecules can form ordered MSAs is a key step. However, attaining a small degree of functionality with simple MSAs will be very significant, as it may indeed open up new avenues for investigating complex MSAs and other nanosystems. Known and functional MSAs will be very useful as local probes to investigate more complex MSAs. In other words, MSAs could become the nanotools of the future. W.J. Blau & A.J. Fleming, Science 304 (2004) 1457 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 14 Plenary Lecture 6 Simulación Molecular de Proteínas Transmembranales Gonzalez-Nilo, Fernando Danilo Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca. La estructura de las proteínas transmembranales ha sido un enigma de los últimos tiempos, sin embargo, las revolucionarias técnicas de cristalografía de rayos X implementadas por Roderick Mackinnon (Nobel 2003), han permitido tener una visión real de la organización de estas proteínas en las membranas. Una familia de estas proteínas son los canales de K+, claves en el sistema nervioso y en la transmisión de impulsos eléctricos. En este ámbito la simulación molecular ha cobrado un importante rol en el análisis de las propiedades energéticas, estructurales y dinámicas de estas proteínas. Unos de los sistemas mas complejos de analizar son las proteínas transmembranales, las que requieren de ser simuladas inmersas en una bicapa lipídica, debido a que las propiedades estructurales de estas proteínas son moduladas por interacciones proteína-lípido. Estos sistemas junto con modelos de solvente explicito (TIP3P) generan sistemas de miles de átomos, que requieren de sofisticados métodos de análisis. Recientemente, hemos realizado un hallazgo muy interesante en los canales TASK2, respecto del estado de protonación de la Arg. La Arg con pKa de 12,1 se caracteriza por ser eminentemente cargado bajo casi cualquier condición del medio, sin embargo, nuestros estudios de simulación molecular han logrado identificar a priori a una Arg como sensor de canales activados por pH. Esta Arg, según su estado de protonación, actúa como un regulador del potencial electrostático del filtro de selectividad, modulando de esta forma la conductancia del canal. Esta hipótesis fue validada experimentalmente mutando este residuo por Lys, His y Ala, obteniendo resultados que indican que esta Arg posee un corrimiento de pKa de más de 6 unidades de pH. Este fenómeno fue estudiado utilizando Dinámica Molecular y Mecánica Cuántica, dando resultados que contradicen dogmas clásicos sobre el estado de protonación de los aminoácidos en las membranas celulares. Agradecimientos: Fondecyt #1040254 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 15 ORAL LECTURES 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 16 Oral Lecture 1 Inclusion of oligomers in PHTP nanochannels. Conformational and spectroscopic aspects using ONIOM and time dependent methodologies. Sergio O. Vásquez A. Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile. Tupper 2069. Santiago. CHILE. Inclusion of guest species in tight cavities inside the supramolecular Perhydrotriphenylene (PHTP) crystal host, induce changes in geometry and spectroscopic properties of the guest molecules. A two-layer ONIOM study of models of the supramolecular architecture of inclusion compounds based on Diphenylhexatriene (DPH), Terphenylene (P3) and Quinquethiophene (T5) show that the observed conformational disorder in this kind of molecular systems is subject to some constraints: there is an important degree of order inside the nanochannels preventing free rotational orientation of the guest molecules as well as free translational distribution in the axial direction of the channels. This kind of unidimensional systems are interesting models for UV to visible down-conversion energy transfer processes through sequential energy transfer processes. Excited states of guest units were studied using ZINDO and time dependent ab-initio calculations. Acknowledgements. The author acknowledges the financial support of this research from Fondecyt Grant 1030662, and Núcleo Milenio de Mecánica Cuántica Aplicada y Química Computacional Grant P02-004-F. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 17 Oral Lecture 2 Rationalization of Charge Transfer Mechanisms Involving Porphyrin Derivatives Metal Complexes Franklin Rosales-Salazar1, Cristhian Berríos1, Verónica Paredes-García2, Diego Venegas-Yazigi3, Gloria I. Cárdenas-Jirón1 1 2 3 Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Zip 40, mail 33, Faculty of Natural Sciences, Mathematics and Environment, Metropolitan Technological University, Av. José Pedro Alessandri 1242, CIMAT, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Zip 233, Santiago, CHILE. Two theoretical proposals of how to rationalize a mechanism governing the charge transfer between porphyrin derivatives metal complexes and substrates of small size are presented. One of them is related to the identification of the local molecular region where the charge transfer has occurred. This methodology was applied to the study of the hydrazine oxidation by a cobalt phthalocyanine (tetrabenzoporphyrin) and to the study of the chlorophenol oxidation by a nickel tetrasulphophthalocyanine. The second propose identify the kind of charge transfer mechanism in terms of the character of the donor acceptor hardness, electrostatic and orbital. The latter proposal was applied to the nitric oxide oxidation by substituted nickel phthalocyanines and by substituted copper phthalocyanines. All the calculations were performed at DFT level of theory. Acknowledgements. The authors thank the financial support provided by FONDECYT Project Nº 1060203 and FONDECYT Lineas Complementarias Project Nº 8010006. C.B. thanks to CONICYT by a Doctoral Fellowship and a Terminal Thesis Fellowship. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 18 Oral Lecture 3 Density Functional Theory Studies on Ferrocenyl-Diimine Complexes Mauricio Fuentealba, María Teresa Garland Laboratorio de Cristalografía, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas. Universidad de Chile. The electrochemical response for the Zn(II) and Cu(II) bis(1-ferrrocenyl-1,3butanodionate)ethylenediimine complexes are similar, each exhibiting a two-electron reversible oxidation wave, on the contrary, Ni(II) and Co(II) bis(1-ferrrocenyl-1,3butanodionate)ethylenediimine complexes undergoes two and three separated oxidation process, respectively[1], insinuating that electronic communication is possible between the two ferrocenyl groups through of an “inorganic bridge”. These results prompted us to study the electronic and geometrical structures of these complexes using density functional theory (DFT) calculations. These computational studies reveal that following the order Zn(II)<Cu(II)<Ni(II)<Co(II) increase the contribution of the p- and d-orbitals of the ligand and the metal, respectively, in the frontier molecular orbitals (MO) of the complexes. The Figure shows the frontier MOs of the Ni(II) and Zn(II) ferrocenyl-diimine complexes. Ni(II) Zn(II) Finally, the oxidized species has been also electronically explored by DFT calculations for a better understanding of the different oxidation processes. Acknowledgments. The authors thank the financial support from the Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT (Chile) Post-Doctoral Grant N° 3060043. References: [1] M. Fuentealba, Doctoral Thesis, P. Universidad Católica de Valparaíso, 2006. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 19 Oral Lecture 4 Multiplicity changes in atoms under pressure Doris Guerraa, Rubicelia Vargasb and Jorge Garzab a b Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Av. República 275, Santiago, Chile. Departamento de Química División de Ciencias Básicas e Ingeniería Universidad Autónoma MetropolitanaIztapalapa A.P. 55-534, México, Distrito Federal 09340, México Pressure effects on the vertical excitation energy and on the Shanon entropy are reported for several atoms (Mg, Ca, Sr, Ba, Ar, kr, Xe, Fe) and some of their ions. The vertical excitation energy is computed by using the expressions derived by Galvan et al.[ J. Phys. Chem. A 102, 3134 (1998)], where the vertical singlet-triplet gap is related with the spin potential, µ S+ . In the present calculations, the atoms are confined by imposing Dirichlet’s boundary conditions on the KS equations [Phys. Rev. E 58, 3949 (1998)] and the ground state electronic configuration is determined for each confinement radius. Acknowledgments. This work has received financial support from the Millennium Nucleus for Applied Quantum Mechanics and Computational Chemistry, grant P02-004-F and Universidad Andrés Bello, grant UNAB-DI-0805/I. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 20 Oral Lecture 5 Effect of Ni(II), Cu(II) and Zn(II) Association on the keto-enol Tautomerism of Thymine Elizabeth Rincón B.a, Otilia Mób, Alejandro Toro-Labbéa,1 and Manuel Yáñezb a b QTC, Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago de Chile. [email protected] Departamento de Química, C-9. Universidad Autónoma de Madrid. Cantoblanco, 28049-Madrid. Spain. The effect of Ni(II), Cu(II) and Zn(II) association on the diketo/keto-enol tautomerism of thymine has been investigated through the use of B3LYP density functional theory calculations. Final energies were obtained at the B3LYP/6-311+G(2df,2p)//B3LYP/6-311+G(d,p) level of theory. All the di-cations investigated lead to an oxidation of thymine and catalyze the tautomerization process, this catalytic effect being much larger upon Ni2+ and Zn2+ association than upon Cu2+ association. One of the most significant consequences of the base oxidation is that the calculated BDE’s are primarily dictated by the value of the second ionization potential of the metal, and therefore follow the sequence Cu2+ > Ni2+ > Zn2+ . Also importantly, metal dication association leads to a stabilization of the keto-enol tautomer, which becomes the most stable form upon interaction with Ni2+ and Zn2+ . This stabilization enhancement is the consequence of three concomitant factors, namely, i) a stronger interaction of the metal cation with the carbonyl oxygen, ii) the interaction of the metal with the dehydrogenated ring nitrogen, iii) an aromatization of the six-membered ring. Acknowledgement: This work was supported by FONDECYT project N◦ 1060590. E.R. is grateful to the Facultad de Química de la Pontificia Universidad Católica de Chile and MECESUP (PUC-0004, Red Química UCH-0116) for a graduate fellowship. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 21 Oral Lecture 6 Theoretical Study of Aromatic Transition State and the Α-Effect Paula Jaramilloa, William Tiznadob, Patricia Pérezb,c. a b c Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales. Universidad Andrés Bello. República 275, Santiago, Chile. [email protected] Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653-Santiago, Chile. Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653-Santiago, Chile. The origin of the α effect, i.e., the enhanced reactivity of nucleophiles that have an unshared electron pairs on the atom adjacent to the nucleophilic center, relative to analogous species, has been a source of continuous challenge since this phenomenon was brought to light by Edwards and Pearson.1 The differential ground state (GS) destabilization, transition-state (TS) stabilization, product stabilization, and solvent effects have been mentioned as possible reasons to account for the α-effect phenomenon. The formation of a TS having aromatic character has been discussed as another specific origin for this effect.2 Liebman and Pollack2 offered an explanation for the α-effect based on the occurrence of an orbital interaction in the transition state, which is absent in both reactants and products. The authors showed the presence of a cyclic transition state when the nucleophilic species have α effect.2 In this work, we want to explain the formation of a cyclic transition structure in systems involving the α-effect an its aromatic character. This work is complemented with the Nucleus Independent Chemical Shifts (NICS)3 methodology, which has been used as aromaticity criterion in transition states. Additionally, we have incorporated an electron localization function (ELF)4,5 analysis, including into plane (σ) and out of plane (π) contributions. Although aromaticity was initially thought for systems with π delocalized electrons, this methodology allowed to rationalize properties of the system with σ-aromaticity. Hydrazine addition to a carbonyl group, peroxide addition to benzonitrile and bisulfite addition to oximes have been used as benchmarks to study this phenomenon. Up to now we have found cyclic transition states for these reactions and analyzed both the acyclic transition state, and the aromatic character of these systems. This treatment has been successful for explaining the enhanced of nucleophilicity of certain species and also shows the importance of the transition state stabilization on the α-effect. References 1. Edwards. J. O, Pearson. R. G. J. Am. Chem. Soc. (1962) 84,16. 2. Liebman. J. F, Pollack. R. M. J. Org. Chem. (1973) 38, 3444. 3. Chen. Z, Wannere. C. S. Corminboeuf. C. Puchta. R. Schleyer. Chem Rev. (2005) 105, 3842 4. Becke. A. D, Edgecombe. K. E. J. Chem. Phys. (1990) 92, 5397 5. Santos. J. C, Andrés. J, Aizman. A, P. Fuentealba. J. Chem. Theo. Comput. (2005) 1, 83. Acknowledgments. This work has been supported by Fondecyt grant No. 1060961, the Millennium Nucleus for Applied Quantum Mechanics and Computational Chemistry (Mideplan-Conicyt, Chile), grant P02-004-F and DI-17-04 from Universidad Andrés Bello. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 22 Oral Lecture 7 Theoretical Study on the Electronic Spectrum of Bi- and Tri-nuclear Pt(II)-Au(I), Pt(II)-Ag(I), Pt(II)-Pt(II) and Pt(II)-Pd/II) Complexes Fernando Mendizábal Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653- Santiago, Chile. [email protected]; Fax: + 56 2 271 3888. The electronic structure and the spectroscopic properties of [Pt(NH3)4][Au(CN)2]2, [Pt(NH3)4][Ag(CN)2]2, [Pt(CNCH3)4][Pt(CN)4] and [Pt(CNCH3)4][Pd(CN)4] were studied at the HF, MP2 and B3LYP levels. The absorption spectrums of these complexes were calculated by single excitation time-dependent (TD) method at HF and B3LYP levels. 1 All complexes shown a (dσ* → pσ) transition associated with a metal-metal charge transfer strongly interrelated with the metal-metal distance. The values obtained theoretically are in agreement with experimental range. Acknowledgements. This work has been supported by Fondecyt 1060044 and Millennium Nucleus of Applied Quantum Mechanics and Computational Chemistry (MIDEPLAN) P02-004-F. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 23 Oral Lecture 8 A Molecular Model Potential Study of Molecular Wires Carmen Herrera S. Departamento de Ingeniería Química,Universidad Tecnológica Metropolitana Ricardo Letelier D. Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas Universidad de Chile, Casilla 2777, Santiago, Chile. [email protected] The electron distribution profile of electronic levels and some electronic properties, such as the gap Homo-Lumo, is analyzed for some model molecular wires consisting of a donor and an acceptor joined by either a linear chain of atoms or a stilbenoid group. In this model, the valence electrons move in a model potential constructed by combining atomic spherical electronic potential energy boxes and the Schrödinger is solved. B S18 S16 D A S17 S11 S15 S2 S12 C S14 E S4 S31 F S5 S32 S13 The model potential representation of a molecule The effect of some asymmetric crystal vibrations on the flow of electrons and their density distribution profiles as well as the type of model potential describing the donor and acceptor, are also analyzed for these model molecular wires. The concept of “molecular electric resistance” is also analyzed under this model. Acknowledgments. This work has been funded by CONICYT- FONDECYT, Chile, Grant N°1040923. Support from the Milenium Nucleus for Applied Quantum Mechanics, contract N° P02–004-F is also gratefully acknowledged. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 24 Oral Lecture 9 Orbital Hardness in Single Monoatomic Anions Mauricio Barrera Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Santiago Chile In a recent paper[1] we showed that within the Kohn-Sham(KS) framework, if the chemical potential is fixed at the frontier eigenvalue, µ = εF it is possible to found a point, rµ in the radial mesh satisfying , µ= Veff (rµ) (1) where Veff is the Kohn-Sham effective potential solving the one electron KS equations. The rµ point show to correspond with the experimental crystalline ionic radii of single anions. Hardness is the resistance to change of the chemical potential when the electronic charge is added or released from the atom and it is formally defined by 2η = δµ/δN (2) By decomposing the KS potential in four terms with known expressions as Veff (r) = Vel(r) + VxLDA(r) + VxGGC(r) + Vc(r) it is possible to take the derivative of each one of this term respect to the occupation number and discarding the contribution of the derivative coming from the correctives terms (VxGGC and Vc), we obtain, at rµ , 2η = δ Veff (rµ) = ∫Φi2(r)dr - cx Φi2(rµ) δN ⏐r- rµ⏐ + O(h 2 ) (3) 3 ρ (rµ) 2/3 Which is similar to the expression obtained previously by Parr and Co-workers for neutral atoms. [2] Another possibility of determining the hardness of an anion is on employing the finite difference method assuming that anion reacts as donor specie losing charge then, 2η− = ∆µ = lim εF(-1+δ) - εF(-1) ∆N δ→1 (4) δ where the limit its taken in the vicinity of the neutral atom[3] avoiding the discontinuity occurring on going from one shell to another. Equations (3) and (4) are examined for a series of single monatomic negative ions with three different exchange potentials. RESULTS On Table 1 are displayed the resulting values for a series of nonoatomic anions employing the LB94 exchange potential on a modified Desclaux atomic program. Table 1 − Anion η (eV) δ Veff (rµ)/δN rµ (A) F6.82 6.46 1.01 Cl4.68 4.37 1.47 Br4.31 3.99 1.61 Na 2.45 2.15 2.60 O5.87 5.37 1.18 S4.17 3.71 1.66 References [1] M.Barrera and F.Zuloaga Int. J. of Quantum Chem, 2044,106,(2006) [2] M. Harbola, R. Parr and C. Lee, J.Chem Phys. 6055, 94, (1991) [3] C. Goycolea, M.Barrera and F.Zuloaga, Int. J. of Quantum Chem, 455, 36, (1989) 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 25 Oral Lecture 10 Fe adatoms along Bi nanolines on H/Si(001): Patterning atomic magnetic chains Walter Orellana Departamento de Física, Facultad de Ciencias, Universidad de Chile Self-organized nanoestructures on surfaces have attracted much attention during the last few years owing their promising applications in the patterning of low-dimensional magnetic systems. Indeed, suitable epitaxial techniques make possible to build one-dimensional (1D) arrays of 3d magnetic atoms adsorbed on step-edges of vicinal metallic surfaces. One of the best-studied magnetic systems of this class are Co nanowires on Pt(997). Following this idea, we study the possibility to construct monoatomic lines of Fe adatoms by decoration of the Bi-dimer line structure on H/Si(001), using spin-density functional calculations. This Bi-line structure is obtained by Bi deposition on Si(001) above the desorption temperature of 500 oC and consist of two parallel Bi-dimer lines which are about 0.6 nm apart and can be over 500 nm in length [1]. Additionally, their structure are free of defects and kinks and have a remarkable straightness. However, possible template applications require the hydrogen exposure of the Bi-line/Si(001) sustrate. After hydrogenation, the H atoms only terminate the Si atoms, leaving the Bi-dimer lines clean and preserving their 1D structure [2]. We investigate the stability of six adsorption sites for the Fe atom in the neighborhood of the Bi lines formed on hydrogenated Si(001) surface. We find that the Fe atoms have the most-stable adsoption sites beside the Bi-dimer lines, suggesting that they form quite 1D atomic arrays. The Fe 1D array, which has a Fe-Fe distance of about 0.8 nm, is magnetic where Fe adatoms couple antiferromagnetically with a weak exchange constant of about 14 meV. We also find that the structural anisotropy of the Fe-adatom site induces a magnetic anisotropy which would be originated in local magnetic dipolar interactions. We estimate a lower limit for the magnetic anisotropy energy (MAE) which is the energy involved in rotating the magnetization from a direction of low energy toward one of high energy. We find a very large MAE of about 3 meV/atom, suggesting a relative high energy barrier to change the magnetization from the preferential directions. Concerning the electronic properties, the 1D Fe array shows a magnetic half-metal behavior, i.e., the majority-spin electrons are semiconducting and the minority-spin electrons are metallic [3]. The above results show that the 1D Fe array adsorbed beside the Bi nanoline structure is a very interesting system both for basic research and for possible technological applications, for instance, in spintronic and in nanoscale data-storage devices. [1] M. Naitoh, et al., Jpn. J. Appl. Phys., Part 1 39, 2793 (1999). [2] R.H. Miwa, et al., Nanotechnology 16, 2427 (2005). [3] W. Orellana, R.H. Miwa, Appl. Phys. Lett. in press (cond-mat/0606707). 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 26 Oral Lecture 11 Procrustes analysis in the study of geometrical similarity effects Verónica Jiménez and Joel B. Alderete Organic Chemistry Department, Universidad de Concepción, Casilla 160-C, Concepción, Chile Procrustes Analysis is a method for relating two sets of multivariate observations, X and Y, by finding the optimal transformations (rotation, reflection, translation and scaling) that provide the best matching between the points in X and Y, preserving their internal object configuration. In this work, we describe the use of Extended Ortogonal Procrustes Analysis (EOP) in the study of geometrical similarity effects on chemical phenomena. EOP’s purpose is to find the optimal orthogonal rotations and translations that give the best geometrical matching between two molecular systems, represented by their standard 3D-coordinate matrices X and Y. The best match is defined as the one which minimizes the sum of squared distances between the transformed X and the corresponding target configuration given by Y: min T ,t || Y − ( XT + jt T ) || subject to T T T = TT T = I (1) where j T = [1 1 1...] (1× p ) is a unitary vector, t T is a (1×3) translation vector and T is a (3×3) rotation matrix. Here we have assumed that X and Y have the same number of rows, p. If this condition is not met one can add the required number of columns, with zeros as entries, to the smaller data set. By solving equation (1) t and T can be expressed as: t = ( B − AT ) T j p T = VW T and where V and W arise from singular value decomposition of X T ( I − (2) jj T )Y p EOP has been implemented in MATLAB 7.0 language and employed in the analysis of structural similarity effects on the antitumor activity of 43 epothilone analogues (Figure 1). The optimized structures of these molecules were obtained from computational calculations at B3LYP/6311++g(d,p) level and were employed in the EOP. It was found that geometrical similarity plays an important role in determining the antitumor activity of the selected set of compounds. R O X HO N O O OH O Figure 1. Shematic representation of epothilone analogues References. 1. P.M. Kroonenberg, W.J. Sunn, J.J.F. Commandeur, J. Chem. Inf. Comput. Sci. 43, 2025 (2003) 2. K.C. Nikolau, F. Roschangar, D. Vourloumis, Angew. Chem. Int. Ed. 36, 2014 (1998) 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 27 Oral Lecture 12 Simulación Molecular de la Interacción entre PIP2 y el canal TRPV1. (Molecular simulation of the PIP2-TRPV1 channel interaction.) Mascayano, C., González, W., Urbina, H. González-Nilo, F., Brauchi, S., Orta G., Raddatz N., y Latorre, R. Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca. Centro de Estudios Científicos, Valdivia. Las proteínas transmembranales son uno de los principales sistemas proteicos estudiados en al área de la biofísica. En la actualidad hay escasa información estructural de este tipo de biomoléculas, sin embargo dada la relevancia de este tipo de proteínas se hace necesario hacer esfuerzos teóricos que permitan dilucidar las propiedades estructurales y dinámicas de estas moléculas. Así mismo, uno de los grandes retos que presentan estos sistemas en química computacional, es el hecho que estas simulaciones deben ser hechas en presencia de una bicapa lipídica, dado que sus propiedades estructurales son altamente dependiente de la interacción proteína-lípido. El objetivo de este trabajo es estudiar las propiedades estructurales de los canales de iones. Estos canales pueden ser activados a través de diversos estímulos; tales como, cambios en el voltaje de transmembranal, unión de ligandos o variaciones de temperatura. De estos eventos, nuestro interés es explorar un mecanismo a través del cual PIP2 (fosfatidilinositol (4,5)-bifosfato) es capaz de interactuar directamente con el canal TRPV1. Actualmente no existe información cristalográfica para ningún canal del tipo TRP, sin embargo, hay evidencias experimentales que sustentan la hipótesis de un putativo sitio de unión de PIP2 muy conservado en esta familia. Como primera etapa de este estudio se generó un modelo molecular del canal TRPV1, que consta de una región transmembranal y de un segmento C-terminal ubicado en la región intracelular. El modelo inmerso en una capa lipídica de POPC fue relajado con dinámica molecular por 3 ns. Para postular el sitio de unión de PIP2 en el canal TRPV1 utilizamos los métodos de simulación de acoplamiento proteína-ligando (docking) implementado en el programa ICM. Para una mejor evaluación de las interacciones electrostáticas, las cargas parciales de PIP2 fueron calculadas utilizando métodos de mecánica cuántica (HF/6-31G**). Los resultados de las simulaciones de docking muestran que PIP2 se ubica preferentemente entre dos subunidades, la cola alifática de PIP2 se inserta en una cavidad entre los segmentos S4 y S5 y la cabeza trifosforilada de PIP2 forma fuertes interacciones tipo puentes salinos con 3 residuos de carga positiva de la región C-terminal, los cuales son clave y determinan la activación PIP2dependiente. Agradecimientos. FONDECYT #1040254 (FGN) y #1030830 (RL). 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 28 Oral Lecture 13 Análisis Estructural del Poro del Canal de K+ HSLO a Través de Simulaciones de Dinámica Molecular. (STRUCTURAL ANALYSIS OF HSLO K+ CHANNEL PORE TROUGH MOLECULAR DYNAMICS SIMULATION) González, W., Urbina, H., Vidal, M., Saavedra, G. y González-Nilo, F. Centro de Bioinformática y Simulación Molecular (CBSM). Universidad de Talca Las simulaciones de dinámica molecular (DM) consisten en calcular la posición de todos los átomos del sistema en función del tiempo a través de la integración numérica de la ecuación de movimiento de Newton, F = ma. El cálculo de una trayectoria clásica, provee información detallada acerca del curso temporal de los movimientos atómicos, a lo cual es difícil acceder experimentalmente. Es por ello que a través de DM nos propusimos estudiar la región del poro de los canales de potasio (K+) dependientes de voltaje. Los canales de K+ son proteínas transmembranales que facilitan el intercambio de este ión a través de las células. Todos ellos presentan un motivo estructural muy conservado (GYGD), conocido como el filtro de selectividad. En el canal KcsA, la mutación del residuo Asp80, presente en la secuencia GYGD, produce canales no funcionales (Guidoni y col., 1999). Sin embargo, la misma mutación en el canal hSlo (D292N) solamente reduce el paso de los iones K+ en un 40 % (Haug y col., 2004). Al parecer el residuo Asp292 en el canal hSlo presenta un rol estructural diferente al resto de los canales selectivos a K+. Para analizar este sistema se realizaron simulaciones de dinámica molecular de 5 nanosegundos del canal hSlo, inserto en una membrana (POPE) bajo condiciones periódicas de borde (modelo de agua TIP3P, 110 mM y 1 M de KCl). Estas simulaciones nos permitieron determinar que el residuo Asp292 tiene un efecto modulador de la concentración local de iones K+ en la región extracelular del canal. La pregunta que nos hacemos es si la mutación D292N afecta solamente la concentración local de iones en el vestíbulo extracelular o si además aumenta la energía libre de unión del K+ en el sitio S1 de unión del filtro de selectividad. Para responder esta pregunta, realizamos cálculos de perturbación de energía libre a través del poro del canal usando Umbrella Sampling (Allen y col., 2006) en simulaciones de DM en equilibrio. Cálculos preliminares de Potential of Mean Force (PMF), usando la ecuación de Poisson-Bolzmann nos indican que la mutación D292N en el canal hSlo, aumenta la energía de afinidad del K+ por el sitio S1 de unión en el filtro de selectividad. Agradecimientos: FONDECYT #1040254. Bibliografía Allen T.W., Andersen O.S., Roux B. (2006) Molecular dynamics - potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels. In press. Guidoni L., Torre V., Carloni P. (1999). Potassium and sodium binding to the outer mouth of the K+ channel. Biochemistry 38:8599-8604. Haug T., Olcese R., Toro L., Stefani E. (2004) Regulation of K+ flow by a ring of negative charges in the outer pore of BKCa channels. Part II: Neutralization of aspartate 292 reduces long channel openings and gating current slow component. J Gen Physiol. 124:185-197. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 29 Oral Lecture 14 NMR and Molecular Modeling studies of cyclodextrin-catechin complexes Carolina Jullian1, Sebastián Miranda2, Gerald Zapata2, Teresita Orosteguis2 and Claudio Olea-Azar2 1 2 Depto de Química Orgánica y Fisicoquímica. CEPEDEQ. Depto de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile. [email protected] Cyclodextrin are cyclic glucose polymers in which glucopyranose units are bonded through α-(1,4) linkages. The torus-like shape allows them to include guest molecules of appropriate polarity and dimension due to their hydrophobic cavity and hydrophilic exterior surface. Complexation of guest compounds with CDs can alter guest solubility, increase stability against the effects of light, heat, and oxidation, mask unwanted physiological effects, and reduce volatility. Tea is one of the most widely consumed beverages in the world; it has been used as a daily beverage and crude medicine in China and Japan for thousands of years. The biological effects of green tea are often attributed to the polyphenols, in particular, the catechins (CA). These tea catechins have received considerable attention in recent years due to their diverse pharmacological potential, which includes antimutagenic activity and anticarcinogenic effects. These properties could have pharmaceutical applications. Inclusion in cyclodextrins is envisaged in order to mask the nasty aspects (taste, color) of such phenolic compounds. We describe now the results of our NMR investigation on the inclusion properties of catechin into βcyclodextrin (β-CD) and two derivatized cyclodextrins, Heptakis 2,6 di O β-cyclodextrin (2,6 DMβ-CD) and 2 Hidroxipropil-β-cyclodextrin (HP-β-CD) aimed to point out the factors affecting the complexation selectivity and stabilization. Analysis of the proton shift change using the continuous variation method confirm the formation of a 1:1 stoichiometric complex for catechin and the different CDs in aqueous medium. The formations constant obtained by Diffusion-Ordered Spectroscopy (DOSY) techniques indicated the following complex formation trend: β−CD > HP-βCD > 2,6 DM-β-CD. The detailed spatial configuration is proposed based on 2D NMR methods and these results are compared with molecular modeling studies. The latter results are in good agreement with the experimental data. There are two models between CA and CDs. CA with β-CD (A) forms a complex where the B ring is orientated towards the primary rim; however when CD are derivatized to HP-β-CD and 2,6 DM-β-CD (B), B ring of CA is orientated towards the secondary rim. A B Acknowledgments. PG/57/205. University of Chile., Beca Memoria de Titulo de Pregrado, Facultad de Ciencias Químicas Farmacéuticas Universidad de Chile, Proyecto Bicentenario de Inserción Académica CONICYT 2005 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 30 POSTERS 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 31 Poster 1 A First Approximation for the Elucidation of the Inhibition of Acetohydroxyacid synthase (AHAS) by Chlorimuron Ethyl Gonzalo A. Jaña, Joel B. Alderete and Eduardo J. Delgado Theoretical and Computational Chemistry Group, Faculty of Chemical Sciences, Universidad de Concepción. Acetohydroxyacid synthase (AHAS), a ThDP dependent enzyme, is involved in the first common step in the biosynthesis of branched chain amino acids (leucine, valine, isoleucine) in plants, fungi and bacteria. Consequently, this enzyme is the target of several commercial herbicides, fungicides and bactericides. These pesticides act inhibiting AHAS and therefore avoiding the synthesis of these amino acids and consequently killing the organisms by lack in these essential amino acids. The herbicides more commercially used are represented by the families of sulfonylureas and imidazolinones because of their low toxicity in animals, high selectivity and low use rates. The herbicides that inhibit AHAS bear no resemblance to the substrates and are not competitive inhibitors, suggesting that they bind at a site distinct from the active site. Inhibition is a timedependent process. In addition the empirical evidence shows that the inhibition by sulfonylureas is a time-dependent process. This leads to the suggestion that these chemicals react better with enamine/α-carbanion reaction intermediate that is formed after decarboxylation of the first molecule of pyruvate. In this work we test the above hypothesis in the frame of computational quantum chemistry. To achieve this goal we study in gas phase the reaction between the enamine/α-carbanion intermediate and the herbicide Chlorimuron Ethyl, as well as the reaction between the intermediate and pyruvate, in order to determine which one is more favored energetically. The calculations for both reactions were carried out using the methodologies HF and DFT using the 6-31G (d,p) base. The search of the transition state was carried out with the QST2 method, acronym of “quadratic synchronous transit.” 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 32 Poster 2 A Density Functional Theory Investigation of a Ferrocenyl Ketoamine and Their Derivatives Andrés Vegaa, Mauricio Fuentealbab, Carolina Manzurc, David Carrilloc. a b c Universidad Andrés Bello, Facultad de Ecología y Recursos Naturales, Av. República 275, Santiago. Laboratorio de Cristalografía, Depto. de Física, Facultad de Ciencia Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago. Laboratorio de Química Inorgánica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaíso. We report in this contribution the Density Functional Theory (DFT) investigations of ferrocenyl compounds in order to obtain a better understanding of the structural and physical features of these kinds of compounds. X-ray diffraction structure (XRD) of the “half-unit” ligand Fc-C(O)-CH2-C(Me)=N-C6H4-o-NH2 only shows the ketoamine tautomeric form, 1a [1]. The DFT calculations confirm these observations showing that 1a is 1.7 eV more stable than the ketoimine form 1b. However, in solution co-exist both tautomeric forms: the 1a and 1b. On the other hand, the “half-unit” transforms into an organometallic 1,5-benzodiazepinium 2+ [2]. The single crystal XRD studies are completely agree with the calculations on 2+ showing a predominance of the delocalised diamine tautomeric form, which is 0.8 and 0.7 eV more stable than the others two amine-imine tautomers. The deprotonation of the molecule 2+ affords the ferrocenyl 1,5-benzodiazepine 3 [2]. In each case, the calculated geometries are very similar to the structures determined by single crystal XRD studies. H N NH NH2 Fc NH2 N O N H O 1a Fc N Fc 1b N Fc 2+ 3 Fc=Ferrocenyl With these results in mind we explored the electronic structures of the compounds and its oxidized and/or reduced forms (10/+, 20/+/2+ and 3-/0/+) in order to provide a rationalisation the redox potentials of these compounds. Acknowledgments. The authors thank the financial support from the Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT , Grant N° 1040851 (C.M. and D.C.) and Post-Doctoral Grant N° 3060043. References: [1] M. Fuentealba. Doctoral Thesis. 2006. Pontificia Universidad Católica de Valparaíso. [2] M. Fuentealba, A. Trujillo, C. Gallardo, C. Manzur, D. Carrillo, A. Vega. Manuscript in preparation. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 33 Poster 3 Design of Possibles Nicotinic Acetylcholine Receptor Ligands Gerald Zapata-Torres1, Bruce K. Cassels2 y Edwin G. Pérez Hernández2 1 2 Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile. Laboratorio de Química Biodinámica, Facultad de Ciencias, Universidad de Chile. Neuronal nicotinic acetylcholine receptors (nAChRs) are members of the “Cys-loop” family of neurotransmitter-gated ion channels (LGICs). They are pentameric proteins formed by the combination of several α2-α10 and β2-β4 subunits, gating cationic channels and playing a key role in some neurological disorders. Alkaloids such as 1 and 2 have been isolated from the bryozoo Flustra foliacea and they are selective towards α4β2 and α7 nAChRs subtypes respectively. H3C 10 N 4 Br H 9 N N Br 3 6 CH3 H 8 5 N 2 1 7 H 1 2 The primary sequences of the different subunits were obtained from SWISSPROT database, and sequence alignments were done using CLUSTALW. MODELLER was used to build threedimensional models for the amino-terminal domains of human α4β2 and α7 nAChRs subtypes according to the homology protein modelling method and the crystal structure of the Acetylcholine Binding Protein (AChBP) isolated from Lymnaea stagnalis was used as template. The optimization of the ligand structures and the assignment of electrostatic charges were done using GAUSSIAN98. Also, docking studies into human α4β2 and α7 nAChRs subtypes models were carried out using derivatives of 1 and 2 with the program AUTODOCK, atomic solvation parameters were assigned using ADDSOL tool, flexible torsions in the ligands were assigned with the AUTOTORS module and the affinity grid fields were generated using AUTOGRID, all modules are included in the AUTODOCK program package. Forty different ligands were docked, where the structural variation was focussed into groups of different size in positions 1 and 2, molecules with or without bromine atom, the type of substituent on N-10 and also the length of the aminoalkyl chain. Our results strongly suggest that the bromine atom and small groups in 2 position such as a propyl group might be relevant for both selectivity and activity of these molecules. Acknowledgements: Edwin G. Pérez Hernández is the recipient of a DAAD scholarship. Gerald Zapata-Torres thanks to Proyecto Bicentenario de Inserción Académica CONICYT 2004. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 34 Poster 4 ESR and theoretical of 5-nitroindazole derivatives as potential antiparasitic drugs. Jorge Rodríguez1,2, C. Olea-Azar1, M. González3, H. Cerecetto3 A. Gerpe3 1 2 3 Department of Inorganic and Analytical Chemistry. Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago 1, Chile Department of Chemistry, Faculty of Basic Sciences, University Metropolitan of Sciences of Education, Santiago, Chile. Department of Organic Chemistry, Faculty of Sciences, University of the Republic, Montevideo, Uruguay Key words: Nitroindazole, ESR, DFT Nitrocompounds have found popular use in the treatment of parasitic infections because of their antiprotozoal–antibacterial activity. In Latin America parasitic diseases represent a major health problem. In particular Chagas’ disease (American Trypanosomiasis), caused by the protozoan parasite Trypanosoma cruzi, affects approximately 20 million people from Southern California to Argentina and Chile. Studies of nitrofuran families have been performed where the structural differences caused the variation of some electronic properties like the reduction potential or the hyperfine coupling constants. Likewise density functional methods are known as capable of providing reasonable predictions for ESR properties, the best results being obtained with the hybrid method B3LYP. Nitro anion radicals generated by electrolytic reduction from a family of 5-nitroindazole derivatives were analyzed using Electron Spin Resonance (ESR). DFT (hybrid method B3LYP) calculations using 6-31G** basis set was performed to obtain the optimized geometries and spin distribution respectively in order to assign the experimental coupling constants obtained with a simulation program. O - O O R1 - O + + N N O O N N N N Y R2 Y R1 = H, CH3, CH2Ph R2 = alinfatic amine cyclic amine Y = O, CH2 Acknowledgments. FONDECYT 1030949, MECESUP UMC-0204, RED RTPD NETWORK 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 35 Poster 5 Experimental and theoretical study of N-alkylation of nitroimidazoic ring with alkyl halides Constain H. Salamancaa and Paula Jaramillob a b Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, casilla 653, Santiago de Chile, CHILE. [email protected] Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales. Universidad Andrés Bello. República 275, Santiago, Chile. N-substituted imidazoles exhibit a variety of valuable pharmacological properties such as antiparasitic, antifungal and antimicrobial activity. In this work we have realized a experimental and theoretical study of N-alkylation of nitroimidazoic ring with alkyl halides. N-alkyl-2-methyl-4nitroimidazoles were obtained by reaction of 2-methyl-5-nitroimidazole with different alkylhalides in alkaline media, at reflux temperature, and acetonitrile like reaction solvent. All reactions were carried out in presence of tetrabutylammonium bromide (TBAB) 3%, as phase transfer catalyst (see Scheme)1. CH3 N CH3 NH + CH3(CH2)nX BTAB K2CO3 N N (CH2)n CH3 CH3CN NO2 O2 N In all reactions N-alkyl-2-methyl-4-nitroimidazole was obtained as a major product. This reaction proceed through a tautomeric equilibrium, which generates two nucleophilic sites. The nucleophilic reactivity of these two sites, to the attack by alkyl halides, was calculated by using the local reactivity index2, given by the Fukui function, philicity index, softness, electrostatic potential3 and analysis of charge in the nitroimidazolic ring. A theoretical reaction mechanism was obtained by analyzing the variations of the shape of the surface potential energy. The results show a minor difference in the local reactivity, nevertheless the path reactions exhibit significant differences in the barrier energy, favoring one of the product. These results agree quite well with the experimental data. References 1. Khabnadideh. S, et al. Biorg. Med. Chem. Lett. (2003) 13 2863-2865 2. Parr. R. G, Yang. W. Density functional theory of atoms and molecules. Oxford science publications. 1989. 3. Jaramillo. P, et al. J. Phys. Chem. A. (2006) 110 8181-8187 Acknowledgments: C.H.S. acknowledges a Ph.D. fellowship from the Deutscher Akademischer Austauschdienst-DAAD. This work has been supported by the Millennium Nucleus for Applied Quantum Mechanics and Computational Chemistry (Mideplan-Conicyt, Chile), and DI-17-04 from Universidad Andrés Bello 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 36 Poster 6 Studies of Chiral Recognition Properties by NMR of Novel Bridged Thiourea Chiral Calix[4]arenes Claudio Saitz, Carolina Jullian, Rodrigo Acevedo, Julio De La Fuente, Hernán Pessoa Depto. Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmaceúticas, Universidad de Chile, Casilla 233, Santiago 1, Chile. [email protected] Chirality is a property that often determines the action and behavior of molecules. In nature, biomolecules exist in only one of the possible enantiomeric forms, for example, L-amino acids and D-sugars. Natural living systems are composed of chiral biological materials. Chiral discrimination is of particular importance and considerable consequence in the medical sciences, as often one enantiomer is pharmaceutically active whereas the other may show adverse side effects. A historic example is the anti-emetic activity of one enantiomer of thalidomide, while the other can cause fetal damage1. Synthetic chiral receptors have been prepared to mimic key features of biological systems toward chiral recognition. They may have potential applications in preparation, separation, and analysis of enantiomers. Calixarenes are a class of macrocycles, generally made up by base-induced condensation of p-substituted phenols and formaldehyde. They have been widely used in the last two decades due to their potential for forming host-guest complexes with numerous classes of compounds in supramolecular chemistry (crown ethers, cyclodextrines, porphyrines, aminoacids, etc) 2. Chiral calixarenes also have potential applications in chiral recognition. Chirality in calixarenes can be generated by either attaching chiral substituents at one of the rims (lower or upper) or synthesizing “inheherently” chiral derivatives, in which the non planarity of the molecule is exploited. The inherent chirality suffers severe limitations, due the difficulties met in the resolution of racemates; therefore, the former approach appears to be preferable. Calix[4]arene 4.5 4.0 3.5 3.0 2.5 2.0 ppm 7 t-Bu t-Bu t-Bu t-Bu 3.5 3.0 2.5 4 2.0 ppm OME OH OH NH HN S NH HN 4.0 3.5 3.0 2.5 R2 OME 6' Me 3' Me OMe O S R1 R3 4.5 N MeO O 4.0 N O S CH2 Calix[4]arene-OME 4.5 H N R2 R1 R3 R1 = -CH2OH R2 = -C6H5 R3 = H 2.0 ppm Continuing the development of our research on asymmetric and symmetric calix[4]arenes3 , we recently have described the effective synthesis of a variety of bis-thiourea bridged chiral calix[4]arenes bearing optically pure α,β-amino alcohol groups4. Here we report that these calixarenes exhibit a good chiral recognition and as well as enantioselectivity between enantiomers of some drugs .eg. omeprazole (OME). It is interesting to note that some 1H NMR signals of this racemic guest were split into two groups when is mixed with chiral calixarene in CDCl3: both methyl groups (2.15 and 2.25 ppm) and one methoxyl group at 3.65 ppm. The results of DOSY experiment (Diffusion Ordered SpectroscopY, is the measure of diffusion coefficients by NMR), which we inform herein, allowed us to confirm the complex formation. The method has been developed in order to facilitate the complexe mixture analysis without physical separation. Through these studies we can conclude that a 76 % of OME is included in the calixarene. We thank FONDECYT (Grant 1050795) 1.2.3.4.- Seeber G., Tiedemann B.E.F., Raymond K.N., Top.Curr.Chem, 2006 ,Gutsche C. David, a) "Calixarenes Revisited"(Ed. Stoddart J.F.), Royal Society of Chemistry, Cambridge, England, 1998. b) “Calixarenes 2001”; Asfari Z.,Böhmer V., Harrowfield M. McB, Vicens J. Eds., Kluwer Academic: Dordrecht, 2001. a) Santoyo F., Torres A. and Saitz C.,Eur. J. Org. Chem., 2000.3587 b) Leyton P, Sanchez-Cortes S, Garcia-Ramos JV, Domingo C, Campos-Vallette M, Saitz C, Clavijo RE, J. Phys.Chem. B, 2004, 108, 17484. c) Leyton P., Sánchez-Cortes S., Campos-Vallete M., Domingo C., García-Ramos J.V., Saitz C., Applied Spectroscopy, 59 (8) 1009-1015, 2005 Saitz C., Jullian C. , Acevedo R.,.De La Fuente J, Pessoa H., Abs.11th BMOS, Canela, Brazil, August-Sept, 2005 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 37 Poster 7 [Cp*-Ru-Indacene-Ru-Cp*]+ Electronic Structure of a Mixed Valence Organometallic System D. Mac-Leod Carey1, J. David2, A. Muñoz1, F. Burgos3, I. Chávez1, J. M. Manríquez1 and R. Arratia-Pérez2 1 2 3 Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile. Departamento de Ciencias Químicas, Universidad Andrés Bello, República 275, Santiago, Chile. Instituto de Química, Facultad de Ciencias, Universidad Austral de Chile, Avda. Los Robles s/n, Campus Isla Teja, Casilla 567, Valdivia. Chile. Keywords: Mixed Valence System, Metallocenes, Material properties, . Our research group has centered its attention in organometallic complexes with improved material properties. One of the topics is the research and develop of an organometallic binuclear system that possesses electronic communication between these metallic centers, in other words, a Mixed Valence System, used as a model for a conductor organometallic polymer which probably will be used as a nanowire. Despites already exists several Mixed Valence binuclear organometallic systems, the basis in the electronic properties that allows the intermetallic communication is not yet a completely understood field. This work is a first approach for a more deeply accomplished computational study in this area. Now we feature the relationship of experimental data with computational results obtained with the Amsterdam Density Functional package (ADF). Acknowledgements: FONDECYT-Chile 1060589, 1030148; UNAB-DI 12-04; UNAB-DI 20-04; DID-UACH S-2006-45; Núcleo Milenio P02-004-F; J. D. gratefully UNAB Doctoral Fellowship D. M. gratefully CONICYT-Chile Doctoral Fellowships and Facultad de Recursos Naturales UNAB. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 38 Poster 8 Effect of Peripheral or Non Peripheral Substitution Upon The Spectroscopic Properties of Zinc Phthalocyanine. D. Mac-Leod Carey1, E. Alarcón2, A. M. Edwards2, A. M. García2, J. M. Manríquez1 and R. Arratia-Pérez3. 1 2 3 Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile. Departamento de Química Biológica, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile. Departamento de Ciencias Químicas, Universidad Andrés Bello, República 275, Santiago, Chile. Keywords: Phthalocyanines, Peripherical and Non Peripherical Substitution, Singlet Oxygen. The present study introduces the effect of the peripheral and non peripheral octasubstitution in the Zinc Phthalocyanine (ZnPc) employing as model hydroxylate´s ZnPc derivatives (ZnPcOH8-P and ZnPcOH8-NP) and for comparison ZnPc without substitution. Our findings clearly indicate a significative difference in the frontier orbitals (HOMO and LUMO) which reflect this distinction on the electronic absortion spectra calculated by means of TD-DFT with Amsterdam Density Functional package (ADF). On another note, the energy difference (GAP) between the first singlet and the triplet excited states were calculated. This last fact, it would be related with the differences observed in the quantum singlet oxygen yield for the substituted ZnPc’s. 0,02 ƒ ZnPc ZnPcOH8-P ZnPcOH8-NP . 0 300 400 500 600 700 800 900 nm Acknowledgements: FONDECYT-Chile 1040667, 1060589, 1030148; UNAB-DI 12-04; Núcleo Milenio P02-004-F; D. M. and E. A gratefully CONICYT-Chile Doctoral Fellowships and A. M. G. DIPUC and Facultad de Recursos Naturales UNAB. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 39 Poster 9 π Donor / Acceptor Effect on Lindqvist type Polyoxomolybdates Functionalizated with Multiple-Bonding Nitrogeneous Ligands D. Mac-Leod Carey1, A. Muñoz1, C. Bustos2, J. M. Manríquez1 and R. Arratia-Pérez3. 1 2 3 Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile. Instituto de Química, Facultad de Ciencias, Universidad Austral de Chile, Avda. Los Robles s/n, Campus Isla Teja, Casilla 567, Valdivia. Chile. Departamento de Ciencias Químicas, Universidad Andrés Bello, República 275, Santiago, Chile. Keywords: Polyoxomolybdates, Heteropolyanions, Functionalization, π donor, π acceptor. Several Lindqvist type polyoxomolybdates [Mo6O19]2- have been synthesized by the replacement of a terminal oxo ligands by multiple-bonding nitrogeneous ligands (process called functionalization), such as, imido ArN2-, hydrazido ArAr’N22- (π donor), diazenido ArN22+ and nitrosyl NO+ (π acceptor). This work deals about the structural, vibrational and electronic differences founded in those functionalizated polyoxomolybdates. Results evidence huge differences between them, which can be related to its π donor or π acceptor character. Those differences can be observed as much in the orbital spatial representations, energy levels of molecular orbitals, structural bond lengths and vibrational frequencies. All the calculations were performed in the Amsterdam Density Functional package (ADF) with the appropriated symmetry for each case, Oh for [Mo6O19]2-, C4v for [Mo6O18(NO)]3-, C2v for [Mo6O18(NNArAr)]2- and [Mo6O18(NAr)]2- and Cs for [Mo6O18(NNAr)]3-. Acknowledgements. FONDECYT-Chile 1060589, 1030148; UNAB-DI 12-04; DID-UACH S-2006-45; Núcleo Milenio P02-004-F D. M. gratefully CONICYT-Chile Doctoral Fellowships and Facultad de Recursos Naturales UNAB. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 40 Poster 10 Electrophilicity and spin polarization within the framework of spinpolarized density functional theory Eduardo Chamorro(a) and Patricia Perez(b) (a) Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales. Universidad Andrés Bello Av. República 275. Santiago, Chile. [email protected] (b) Departamento de Química y Departamento de Fisica, Facultad de Ciencias.Universidad de Chile. Casilla 653-Santiago. Chile The development and usefulness of both global and local descriptors of chemical reactivity based on the spin-polarized density functional theory framework (SP-DFT) are discussed.1 In particular, we have reviewed the applicability range of electrophilicity indices defined both at the global and local levels.2 Both models have been applied to simple substituted carbenes and silylenes3,4 to examine their reactivity patterns. An orbital implementation of the SP-DFT Fukui functions has been further studied4 and the natural generalization toward topological-defined condensation schemes5 has been further sketched. Acknowledgements. This work has been supported by Fondecyt (Chile), grants 1030173 and 1060961, and the Millennium Nucleus for Applied Quantum Mechanics and Computational Chemistry (Mideplan-Conicyt, Chile), grant P02-004-F. We thank the Universidad Andres Bello (UNAB) by support through the Project UNAB-DI 16-04. References 1 2 3 4 5 R. Vargas, A. Cedillo, J. Garza, and M. Galvan, Reviews of Modern Quantum Chemistry 2, 936 (2002) E Chamorro, P Pérez, F De Proft, P Geerlings. Journal of Chemical Physics 124 (2006) 044105. E. Chamorro, J. C. Santos, C. Escobar, P.Perez, Chemical Physics Letters, (2006, In Press). E Chamorro, P Pérez. Journal of Chemical Physics 123 (2005) 114107. F. A. Bulat, E. Chamorro, P. Fuentealba, and A. Toro-Labbe, Journal of Physical Chemistry A 108 (2), 342 (2004); E. Chamorro, W. Tiznado, C. Cardenas, M. Duque, J. C. santos, P. Fuentealba, J. Chem. Sci. 117, 419 (2005). 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 41 Poster 11 2D-ROESY NMR Studies and Molecular Modeling of Supramolecular Complexes of αCD-DIALKYLAMINES Erika Lang1, Nicolas Yutronic2, Juan Merchán2, Paul Jara2 and Gerald Zapata-Torres3 1 2 3 Centro de Equipamiento Mayor, Departamento de Biología, Facultad de Ciencias, Universidad de Chile. Laboratorio de Síntesis Inorgánica y Electroquímica, Facultad de Ciencias, Universidad de Chile. Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile. Cyclodextrins (CD) are cyclic no reducing sugar consisting of six or more glucopyranose units compressing an inner hydrophobic cavity and outer hydrophilic surface. Because of its hydrophobic character, water molecules that occupy the CD cavity can be readily replaced by less polar guest molecules forming host-guest inclusion complex. CD comprise a family if three well-known industrially produced major, and several rare, minor cyclic oligosaccharides. The most common CD are designated with the prefix α, β and γ corresponding to six, seven and eight glucopyranose units, the cavity diameter and therefore the number and type of guests that can be accommodated varies with the number of glucopyranose units that comprise the CD molecule. The guest molecule is limited in its size to be enclosed within the isolated cavity. Most guest molecules form a 1:1 inclusion complex, however, more complicated complex such as 2:1, 1:2 and 2:2 are possible. Supramolecular chemistry is that discipline of chemistry which involves all intermolecular interactions where covalent bonds are not established between the interacting species. The majority of these interactions are of the host-guest type. Among all potential hosts, the CD seem to be the most important ones. 2D-ROESY spectrum showed strong intermolecular NOE cross-peaks between the DOA protons Hβ−γ−δ−ε−ζ, and Hη with both protons H3 and H5 in the interior wall of the CD cavity (Figure 1), 2D-ROESY experiments allowed to observe the 5 Å spatial proximity limit among the functional group of guests and α-CD. The proton Hη of the guest that corresponds to the methyl group presents two strong interactions with the protons H3 and H5, and also it presents two weak interactions with the protons H4 and H2 of the host, thus indicating that the spatial proximity of the strongest interactions is minor, effect that turns out to be also reflected in the ROESY of other compounds of inclusion (α-CD:DPA and αCD:DHA). These results indicate that the methyl groups of the guests (DPA, DHA and DOA) find themselves located inside the cavity of the CD. Our molecular modeling studies carried out for all the host-guest complexes have shown unequivocally that all alkylamines (DPA, DHA and DOA ) under study are contained in the interior of the cavity, where the methyl groups interact with protons H-3 and H-5 of the sugar moieties and the methylenes interactions are also represented. Figure 1 Acknowledgments. Gerald Zapata thanks to Proyecto Bicentenario de Inserción Académica CONICYT 2004. Paul Jara thanks to FONDECYT grant N° 1040581. Nicolas Yutronic thanks to FONDECYT grant N° 1050287. Erika Lang thanks to Laboratorio de Resonancia Magnética, USACH. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 42 Poster 12 Theoretical Study in [C2H4-Tl]n+ and [C2H2-Tl]n+ (n = 2, 3) Complexes Fernando Mendizábal and Daniela Donoso Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653- Santiago, Chile. [email protected]; Fax: + 56 2 271 3888. We studied the attraction between [C2H4] or [C2H2] and Tl(I) in the hypothetical [C2Hm-Tl]n+ complexes (m = 2 or 4, n = 2,3) using ab initio methodology. We found that the changes around the equilibrium distance C-Tl and in the interaction energies are sensitive to the electron correlation potential. We evaluated these effects using several levels of theory, including HF, MP2, MP4 and CCSD(T). The obtained interaction energies differences at the equilibrium distance Re (C-Tl) range from 25 and 50 kJ/mol at the different levels used. These results indicated that the interaction between olefinic systems and Tl(I) are a real minimum on the potential energy surfaces. We can predict that these new complexes are viable of synthesizing. Acknowledgements: This work has been supported by Fondecyt 1060044 and Millennium Nucleus of Applied Quantum Mechanics and Computational Chemistry (MIDEPLAN) P02-004-F. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 43 Poster 13 Molecular Modeling of 5-HT2 receptors Jorge Rodríguez1,2, Gerald Zapata-Torres2 1 2 Department of Inorganic and Analytical Chemistry. Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile Department of Chemistry, Faculty of Basic Sciences, University Metropolitan of Sciences of Education, Santiago, Chile. Keywords: Molecular Modelling, Membrane Proteins, 5-HT2, Docking Explicit 3-D structural models for the transmembrane domain based on Bovine Rhodopsin structure (bovine rhodopsin P02269) were built using MODELLER program for human 5-HT2A and 5HT2C serotonin receptors. This methodology considers the superposition of the regions aligned, to avoid steric collisions, the stereochemistry of the model and most favourable rotamers for aminoacid side chains. Finally, these models were used to assess likely binding modes of their endogenous ligand 5HT and phenyalkylamines such as DOB, DOF, DMA, QDOB and other N sustituded α-desmethyl DOB analogs. The energy analysis of the minimised structures obtained by ligand docking showed a good agreement with the affinity constants obtained from experimental results and described in the literature. The most important interaction is the electrostatic interaction between the ammonium group of the ligands and the Asp70/70 residue of the 5-HT2A or 5-HT2C receptor. Other residues that interact with the ligands also show a good agreement with experimental data for both receptor subtypes. It should be recalled that both 5-HT2 receptor subtypes considered here have conserved residues at corresponding positions in their sequences but, in spite of this, the contribution of each of these to the total interaction energy is different. The ability to identify residues involved in ligand binding in our models 5-HT receptor ligands reinforces the idea that the complexes formed between these ligand types and the receptors occupy similar regions in both receptor models. Acknowledgments. JR thanks to MECESUP PROYECTO UMC-0204 and GZT thanks to PROYECTO BICENTENARIO DE INSERCION ACADEMICA CONICTY 2005. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 44 Poster 14 Molecular modeling study on the interaction of Fe65 PTB2 Domain and AICD complex Sebastian Miranda-Rojas1, Claudio Olea-Azar1, Gerald Zapata-Torres1 and Daniel BorquezMacherone2 1Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences. Olivos 1007. University of Chile. 2Department of Biology, Faculty of Sciences. Las Palmeras 3425, Ñuñoa. University of Chile. APP is an integral membrane glycoprotein. Its principal isoform consists of 695 amino acids (aa) which are distributed in an extracellular domain, a transmembrane region and small cytoplasmatic tail of approximately 60 aa. Currently its function is unknown, but it has been implicated in Alzheimer disease, since due to its consecutive proteolitic cleavages of the transmembrane domain by β and γ secretases generates the β amyloid peptide, where its extracellular accumulation results on the formation of amyloid plaques found in Alzheimer’s patients brain. However, nowadays attention have been paid to the possible rol that the intracellular domain of APP (AICD) plays in intracellular signaling processes, where it activates the transcriptional activity of several proteins and the proteolityc processing of APP. One of the most important complexes that AICD forms is the complex with the Fe65 adaptor protein, which in turn consists of three domains namely WW, and the phophotyrosine binding domains PTB1 and PTB-2. So far, AICD is the only peptide described that interacts with PTB-2 Domain, which is located near the end of the C-terminal region of this protein. This interaction is the main transcriptional activation mechanism of Fe65 which is directly related with the increase of β amyloid peptide present in Alzheimer’s brain patient. The understanding of the molecular mechanisms involved in Alzheimer’s disease is of great deal, moreover the lack of a crystal structure of both interaction domains, makes it difficult to address the problem, so we have carried out molecular modeling studies in order to get an accurate description of the PTB2-AICD interaction (Figure 1). This study could lead us to a better understanding of the molecular basis for the selectivity and protein-protein recognition that PTB2 shows towards AICD (considering a fragment of 10 aa described in literature as involved in that interaction). From our point of view, the inhibition of this interaction is an important goal to achieve and a pharmaceutical target to fight Alzheimer’s disease. Acknowledgments. Sebastián Miranda-Rojas thanks to Beca de Memoria de Título de Pregado, Facultad de Ciencias Químicas y Farmacéuticas and Gerald Zapata-Torres thanks to Proyecto Bicentenario de Inserción Académica CONICYT 2005. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 45 Poster 15 Prediction of Octanol-Water Partition Coefficients of Chlorinated Biphenyls by Molecular Descriptors. Gerardo A. Diaz, Gonzalo A. Jaña and Eduardo J. Delgado Theoretical and Computational Chemistry Group, Faculty of Chemical Sciences, Universidad de Concepción. The behavior of xenobiotics (man-made chemicals) in the environment is largely controlled by their relative tendencies to partition into air, water, and organic phases such as lipids, waxes, and natural organic water. Accordingly, one of the key descriptors of these tendencies is the octanol-water partition coefficient (KOW). Moreover, the importance of octanol-water partition coefficients as an indicator of lipophilicity in biological and medical sciences is well known. Since the pioneering work by Hansch, the need for accurate and fast calculation of its value for new molecules has been recognized. Polychlorinated biphenyls (PCBs), a family of 209 congeners each of which consists of two benzene rings and one to ten chlorine atoms, are ubiquitous in the global environment because of their biological and chemical stability and their historical widespread use in the power generation industry. In this contribution, a quantitative structure-property relationship (QSPR) model based on molecular descriptors is reported for the prediction of logarithm of octanol-water partition coefficient of PCBs. The data set contains 92 compounds covering a log KOW range from about 4.5 to 9.1 log units. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 46 Poster 16 Nucleophilic Activation Of Charged Systems: Carbon Nanotube v/s Dielectric Models German Miño1, Willian Tiznado2 and Renato Contreras2 1 2 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello Departamento de Quimica, Facultad de Ciencias, Universidad de Chile Nucleophilic activation was evaluated for a series of charged H-bonded species based on an empirical spectroscopic scale [1]. The behavior in different environments was analyzed for the anionic complexes [FHCL]- , [FHBr]- & [FHI]- at B3LYP/DGDZVP level of theory. Encapsulation inside capped carbon nanotubes (CCNT) and within a dielectric were performed using ONIOM and SCIPMC tehcniques. All calculations were done with Gaussian package of software version 2003. Our result shows that there exist a significant nucleophilic activation, with respect to the gas phase, for complexes encapsulated in CCNT´s, and that this enhancement can not be reproduced by dielectric models. References: 1.- Campodónico, P; Aizman, A & Contreras, R. Empirical scale of nucleophilicity for substituted pyridines. Chem. Phys. Lett. 422, 206 (2006). 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 47 Poster 17 Theoretical Study on CDK2 Inhibitors Using a Global Softness Obtained from the Density of States Jans H. Alzate-Moralesa,*, William Tiznadoa, Juan C. Santosb, Carlos Cárdenasb, Renato Contrerasa a b Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Av. República 275, Piso 3, Santiago, Chile We report a theoretical study on a series of CDK2 inhibitors using a set of global reactivity indexes defined in terms of the density of states. The statistical analysis was performed on the basis of two groups of 11 and 6 compounds respectively, reported by Hardcastle et al [J. Med. Chem. 2004, 47, 3710-3722] which were classified on the basis of the sites targeted within the active site of CDK2. The comparison between the biological activity and the electronic chemical potential approached as the Fermi level yields poor results, thereby suggesting that the interaction between the hinge region (HR) of CDK2 and the ligands may have a marginal contribution from the charge transfer (CT) component. Comparison between the biological activity and global softness shows a better correlation, thereby suggesting that polarization effects outweigh the CT contribution in the HRligands interaction. The study is complemented with a local analysis based on the electrostatic potential which gives a good qualitative description about the orientation that the ligands adopt upon approaching the CDK2 hinge region, within a picture which is reminiscent to the lock and key model. -3 y = -4.1049x + 7.5903 R2 = 0.8026 -2.5 -2 LogIC50 -1.5 -1 -0.5 0 0.5 1 1.5 1.5 1.7 1.9 2.1 2.3 2.5 2.7 Global Softness (1/eV) Acknowledgments. Work supported by the Millennium Nucleus for Applied Quantum Mechanics and Computational Chemistry, Grant P02-004-F. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 48 Poster 18 Study of aromaticity of planar carbon clusters through the topological analysis of electron localization function Leonor Alvarado y Juan C. Santos Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello. Av. República 275, Santiago, Chile. [email protected] The annular structure of planar carbon cluster (C2n n=3-12) have been studied in the framework of density functional theory using B3LYP/6-31g(d) theoretical level. The electron delocalization (aromaticity) was evaluated through bifurcation analysis of electron localization function, ELF. We evaluated the contributions of the sigma and pi electron systems applying the ELF analysis over the respective separated densities, ELFσ and ELFπ.1,2 We have found that systems with 4C+2 (C=1-5) carbon atoms are aromatic, which is in agreement with Xu et al.3 These clusters have a bifurcation of the π system like benzene, with a bifurcation value close to 0.91. On the other hand, we have found that sigma delocalization has a high contribution in these kind of clusters, increasing with the size of cluster from 0.735 (typical interaction in a classical organic compounds) to 0.839 (high delocalization as in case of σ-aromatic compound) for C6 and C22, respectively. The system with 4C (C=2-6) carbon atoms show a typical conflicting delocalization. The sigma interaction increases with the size of cluster yielding to a high delocalization from C16 to C24, while the π system corresponding to antiaromatic compounds. Acknowledgements. Millennium Nucleus for Applied Quantum Mechanics and Computational Chemistry, Nº P02-004-F (Mideplan-Conicyt) and Dirección General de Investigación, Grant DI-22-05/R, UNAB. References 1 J. C. Santos, W. Tiznado, R. Contreras and P. Fuentealba, J. Chem. Phys. 120, 4, 1670, 2004. 2 Juan C. Santos, Juan Andres, Arie Aizman, and Patricio Fuentealba, J. Chem. theory and comp., 1, 83, 2005 3 S. Xu, M. Zhang, Y. Zhao, B. Chen, J. Zhang, C. Sun, Chem. Phys. Lett. 421, 444, 2006 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 49 Poster 19 Calculated Relativistic Nuclear Magnetic Shieldings on monohalides of noble metals Jorge David, Doris Guerra, and Ramiro Arratia-Perez Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, República 275, Santiago-Chile. [email protected], [email protected], [email protected] Keywords: Nuclear Magnetic Shieldings, Relativistic calculations, Monohalides of noble metals Fully ab-initio relativistic and nonrelativistic calculations of the nuclear magnetic shielding of nine 63 107 197 19 35 79 127 Ag, Au; X= F, Cl, Br, I) are reported. molecular compounds MX (M= Cu, Relativistic calculations were performed with Dirac-Hartree-Fock level (DHF) in the Random-Phase approximation method (RPA). The relativistic and nonrelativistic calculations of the Nuclear Magnetic Resonance (NMR) shieldings are compared in order to establish its relationship with nuclear charges and the effects of spin-orbit coupling in the NMR shielding constant. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 50 Poster 20 Endo/Exo Selectivity in Intermolecular Diels-Alder Reactions Jorge Soto-Delgado and Renato Contreras Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653-Stgo, Chile. The potential energy surface for the intermolecular cycloadition of five-membered dienes to five membered dienophiles have been fully explored at the B3LYP/6-31+G* level of theory. Transition state structures have been located and characterized. The endo approach appears energetically favored, in agreement with experimental results1. The energy analysis is reinforced by a theoretical study introducing global and activation indexes. Acknowledgments. Work supported by MECESUP-0408 fellowship and Fondecyt, Grant 1030548 and Millennium Nucleus for Applied Quantum Mechanics and Computational Chemistry, Grant P02-004-F. the Reference: 1. Rulisek, L., Sebek, P., Hlavas, Z., Hrabal, R., Capek, P., Svatos. A.; J. Org. Chem, 2003, 70, 6298. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 51 Poster 21 Humic Acids As Molecular Assemblers in Sers Detection of Polycyclic Aromatic Hydrocarbons J. S. Gómez-Jeria, M. M.Campos-Vallette and P. Leyton, University of Chile, Faculty of Sciences, P.O. Box 653 Santiago, Chile. [email protected] A humic acid (HA) of 103 kDa molecular weight was successfully used in surface-enhanced Raman scattering SERS experiments as molecular occlusion assembler deposited onto a Ag colloidal surface to detect the polycyclic aromatic hydrocarbons PAHs chrysene and pyrene. Chrysene (Chr) and pyrene (Pyr) were detected at concentrations lower than 10-6 M by using the 541 nm excitation laser line. A charge transfer between HA and the analyte characterizes the humic acid-analyte interaction. The interaction resulted to be more significant in the case of the pyrene molecule. Extended Hückel calculations based on a molecular model for the interacting Chr/HA/Ag system support the experimental conclusions. The Chr-HA distance is about 3.5 Å and the most probable orientation for Chr is plane parallel to the aromatic fragments of HA. An energy transfer from the silver surface to HA and from the analyte to HA is concluded. Acknowledgements. The authors acknowledge project Fondecyt 1040640 from Conicyt and project C-13879 from Fundación Andes. PL acknowledges project AT 4040084 from Conicyt. References. 1. P. Leyton, J. S. Gómez-Jeria, S. Sanchez-Cortes, M. M. Campos-Vallette. J. Phys. Chem.. B110, 6470 (2006) 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 52 Poster 22 On The “Metallicity” of Some Metallic Nanotubes Juan S. Gómez-Jeria1 and Ramiro Arratia-Pérez2. 1 2 Programa de Doctorado en Fisicoquímica Molecular. Facultad de Ecología y Recursos Naturales. Universidad Andrés Bello, Santiago, Chile; and Departament of Chemistry, Faculty of Sciences, University of Chile. P.O. Box 635, Santiago-Chile. Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello. Santiago, Chile. Pure and perfectly cylindrical defect-free carbon NTs are viewed as a conformal mapping of the two-dimensional honeycomb lattice of a single sheet of graphite onto the surface of a cylinder. The helical symmetry of the carbon atoms around the axis of the cylinder is denoted by two integers (m,n) that indicate the number of lattice vectors in the graphite plane used to make the nanotube. For certain values of the couple (m,n) two sub-families of NTs are obtained. For m=n the so called armchair family of NTs is generated. For the case (m,0) the zigzag family of NTs is formed. It is accepted that a relationship exists between the values of the pair (m,n) and the conductivity properties of perfectly cylindrical defect-free carbon NTs. If (n-m)=3t (with t=0,1,2...) the corresponding NTs will display a metallic behaviour. Otherwise, the NTs will have semiconducting properties. This means that all the zigzag and one third of the armchair NTs will be metallic. Lieber et al. used low-temperature scanning tunneling microscopy to characterize the atomic structure and local DOS of metallic zigzag and armchair single-walled carbon nanotubes (SWNTs) [1]. Their data recorded on (9,0), (12,0) and (15,0) zigzag SWNTs show conclusively the existence of gap-like structures at the Fermi energy, EF. Consequently, these metallic zigzag NTs are in fact small-gap semiconductors. Their results also show that isolated armchair SWNTs have neither gaps or pseudogaps. We show here that employing Molecular Orbital theory at the Extended Hückel Theory level (EHT) we may predict perfectly the experimental conducting properties of the (m,m) and (m,0) families of isolated SWNTs. The size of the selected NTs were determined accordingly to the “minimal length” rule [2]. The EHT Total Density of States curves for the semiconducting (10,0) zigzag NT, the metallic (5,5) armchair NT and the small-gap semiconductor (9,0) zigzag NT were obtained and plotted for the [-3 eV,3 eV] interval about the Fermi Level. The structure of each curve is in perfect agreement with experimental results. Acknowledgements. This research was partially funded by Department of Chemistry, Faculty of Sciences, University of Chile. References. 1. M. Ouyang, J-L. Huang, C. L. Cheung, C. M. Lieber, Science 292, 702 (2001). 2. J. S. Gómez-Jeria, F. Soto-Morales, J. Chil. Chem. Soc. 50, 597 (2005). 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 53 Poster 23 Carbon Nanotube as Molecular Assemblies: Surface-Enhanced Resonance Raman Spectroscopy (SERRS) and Theoretical Studies J. S. Gómez-Jeria, M. Campos-Vallette and P. Leyton. Departament of Chemistry, Faculty of Sciences, University of Chile. P.O. Box 635, Santiago-Chile. [email protected] It has been demonstrated by SERRS experiments that metallic single-walled nanotubes can be used as chemical assemblies between the pyrene analyte and the silver colloidal surface. Pyrene has been detected at concentrations lower than 10-9 M by using the 541 nm excitation laser line. A charge transfer from the surface to the nanotube characterizes the nanotube-silver surface interaction. The pyrene-nanotube interaction occurs through a π-π electronic stacking. Extended Hückel calculations based on a simplified molecular model for the analyte/nanotube/surface system support the experimental conclusions. The nanotube-pyrene distance is 3.4 Å and the most probable orientation for pyrene is confirmed to be plane parallel to the nanotube surface. An energy transfer from the silver surface to the nanotube/analyte system is verified. Acknowledgements. Authors acknowledge project Fondecyt 1040640 from Conicyt (Chile) and Fundación Andes project C-13879 for financial support. P. Leyton acknowledges project AT 4040084 from Conicyt. Reference. P. Corio, S.D.M. Brown, A. Marucci, M. A. Pimenta, K. Kneipp, G. Dresselhaus, M.S. Dresselhaus. Surface-enhanced resonant Raman spectroscopy of a Single-wall carbon nanotubes adsorbed on silver and gold surfaces. Phys. Rev. B 61 (2000)13202. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 54 Poster 24 Multiple Linear Regression Study of the Antimalarial Activity of Aziridinyl 1,4-Naphthoquinonyl Sulfonate and Acylate Derivatives M. Leonor Contreras Laboratorio de Química Computacional, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile. [email protected] José Alvarez Departamento de Ingeniería Informática, Facultad de Ingeniería, Universidad de Santiago de Chile Roberto Rozas Laboratorio de Química Computacional, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile Malaria is a disease caused by a parasite. There are an estimated 300-500 million cases of malaria each year in the world resulting in over 1-2 million deaths. Although the discovery of artemisinin, a natural endoperoxide sesquiterpene lactone and various of its analogues have shown high antimalarial activity against the resistant Plasmodium falciparum and there has been efforts on vaccine development, this has not yet made a significant contribution to controlling the disease and still the search for antimalarial drugs having increased half-lives and minimum side effects is of current interest. In this work, 63 derivatives of 2-aziridyl, 3-aziridyl, and 2,3-bis(aziridyl)-1,4-naphthoquinonyl sulfonate and acylate (structure (I)) having known antimalarial activity1 were studied by means of multiple linear regression (MLR) in order to get both a quantitative structure-activity relationship that can be used as a predictive tool useful for antimalarial drug design and obtention of structural knowledge useful to make a contribution to the mechanism of action or to the intermolecular interactions of studied compounds. O 1 4 R3 R1 R2 O (I) Structures were first optimized by semiempirical methods (AM1 included in Hyperchem 7.5)2 and then optimized by ab initio methods at the DFT B3LYP/6-31G* level of Gaussian 98W.3 Furthermore 165 descriptors were calculated for each structure using Codessa 2.6.4 The results of correlation analysis using the Best Multi-Linear Regression method show that the antimalarial activity of structure (I) derivatives is strongly dependent on both electrostatic character and hydrogen bond acceptor properties, being the charge on oxygen of carbonyl group of position 4, the most important descriptor. Acknowledgements: DICYT – USACH Project Nº 060441CF and SDT – USACH Project CIA 2981. 1. 2. 3. 4. Zahouily, M.; Lazar, M.; Elmakssoudi, A.; Rakik, K.; Elaychi, S.; Rayadh, A. J Mol Model (2006) 12: 398-405. Hyperchem (TM) Professional 5.1, Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida 32601. USA. Gaussian, Inc. Carnegie Office Park, Building 6, Suite 230 Carnegie, PA 15106 USA. Comprehensive Descriptors for Structural and Statistical Analysis, Semichem, http://www.semichem.com. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 55 Poster 25 Ab initio All-Electron Relativistic Calculations on the Series of [Re(CN)6]n- Complexes (n = 1 to 5). Luis Álvarez-Thon and Ramiro Arratia-Perez Departamento de Ciencias Químicas, Universidad Andrés Bello, República 275, Santiago, Chile. Keywords: transition metal, spin orbit coupling, relativistic effects. There exists an increasing interest in the chemistry and properties of transition metal-cyanide complexes due to their possible use for an assortment of applications that include electronics, magnetism and catalysis.1,2 Thus, the transition metal-cyanide complexes are viewed as useful molecular precursors, which can be, incorporated into high–nuclearity clusters with adjustable magnetic properties and could be of utility in the design of cyano-bridged materials with potentially technological applications.1-5 It is expected that the incorporation of third-row transition metal complexes may enhance the utility of such materials since these third-row transition metals possess higher-energy valence d orbitals that may induce magnetic anisotropy due to the effects of significant spin-orbit coupling.4,5 The purpose of this investigation is to determine accurate calculations on molecular properties of [Re(CN)6]n- complexes (n=1 to 5), by the Relativistic Dirac-Hartree-Fock (DHF) method implemented in the DIRAC6 code. This relativistic four-component formalism has no approximations and includes the spin-orbit interaction implicitly and has proven to be the best method for heavy atom studies. Acknowledgements: We thank Fondecyt 1030148 ,UNAB DI-12-04 , Millenium Nucleus No. P02-004-F for their support. References 1. Ferlay, S.; Mallah, T.; Ouahes, R.; Veillet, P. ; Verdaguer, M. Nature 1995, 378, 701; Dunbar, K. R.; Heintz, R. A. Prog. Inorg. Chem. 1997, 45, 283; (c) Yet, L. Angew. Chem. Int. Ed. Engl. 2001, 40, 875. 2. Khan, O.; Martinez, C. J. Science 1998, 279, 44; Berlinguette, C. P.; Smith, J. A. ; Galan-Mascaros, J. R.; Dunbar, K. R. C. R. Chimie 2002, 5, 665. 3. Bennett, M. V.; Long, J. R. J. Am. Chem. Soc. 2003; 125, 2394. 4. Sokol, J. J.; Hee, A. G.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 7656. 5. Beltran, L. M. C.; Long, J. R. Acc. Chem. Res. 2005, 38, 325. 6. DIRAC, a relativistic ab initio electronic structure program, Release DIRAC04.0 (2004)", written by H. J. Aa. Jensen, T. Saue, and L. Visscher with contributions from V. Bakken, E. Eliav, T. Enevoldsen, T. Fleig, O. Fossgaard, T. Helgaker, J. Laerdahl, C. V. Larsen, P. Norman, J. Olsen, M. Pernpointner, J. K. Pedersen, K. Ruud, P. Salek, J. N. P. van Stralen, J. Thyssen, O. Visser, and T. Winther. (http://dirac.chem.sdu.dk) . 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 56 Poster 26 Theoretical-Experimental Correlation by Spectroscopy UV-Visible of [RuH(CO)(dppz-R)(PPh3)2]+ Complexes (R= Cl, Me, H) Mauricio Yañez1,2, Sergio A. Moya1, Gloria I. Cárdenas-Jirón2 1 2 Laboratory of Coordination Chemistry and Catalisis, Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile, Zip 40, Mail 33, Santiago, CHILE [RuH(CO)(dppz-R)(PPh3)2]+ complexes with R= Cl, Me and H were characterized by UV-Visible spectroscopy (Figure), and a rationalization of the experimental bands registered in the spectrum was performed in terms of electronic transitions between molecular orbitals (⎯⎯) [RuH(CO)(dppz)(PPh3)2]+; (⎯⎯) [RuH(CO)(dppz-Cl)(PPh3)2]+; (⎯⎯) [RuH(CO)(dppz-CH3)(PPh3)2 ]+ Fully optimized molecular structures of [RuH(CO)(dppz-R)(PPh3)2]+ complexes using the Hartree Fock semi-empirical PM3(tm) level of calculation in gas phase were obtained. Molecular orbitals (MO) of these complexes were obtained by single point calculations with B3LYP/LACVP(d,p). The lower energy band (≈ 350-390 nm) was associated to a HOMO→ LUMO transition (Figure only shows the HOMO(A) to LUMO (B) transition for the [RuH(CO)(dppz-Cl)(PPh3)2]+ complex). In contrast, the bands observed in the 220-280 nm range have been associated to HOMO1→LUMO+3 and HOMO-1→LUMO+2 transitions. Acknowledgements. The authors thank the financial support provided by FONDECYT (Projects Nº 1050168 and Nº 1060203) and FONDECYT Lineas Complementarias (Project Nº 8010006). My thanks to CONICYT by a Doctoral Fellowship. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 57 Poster 27 Electronic Structure of [ 4.4’-R(bpy)2 Ru Phpy] + bpy=2,2’bypiridine , Phpy= Phenyl pyridine Mauricio Barrera, Mauricio Arias, Max Quinteros and Barbara Loeb Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Santiago Chile During the last years the family of Ruthenium complexes [ Ru(R,bpy)2 L2 ]0,+2 (L2 is a bidentate ligand o two monodentate ligands) has been subject to intensive studies due to their potential use as sensitized dye on TiOr- based, solar cell devices[1]. The key role of the dye is to capture the visible light and transfer it to the semiconductor band gap as a photocurrent. The L2 ligand also plays an important role; it is responsible of tuning the optical properties of the dye with the visible part of the solar emission spectrum. Among of all possible L2 ligands, we focused our research on the Phenyl pyridine derivates due to their well-known σdonor properties that rise the t2g metal orbitals. Density Functional Theory methods, due to their good predictive results, could be employed as a guiding tool for helping synthesis design. In accordance with this approach, we start a series of theoretical studies over a family of Ruthenium compound containing cyclometalated ligands. We focus our calculations on predicting the bathochromic displacement of the MLCT band, and the role of the position of the anchor on redirecting the electronic density. FIG 1 FIG 2 Geometrical optimization was done with a DZ basis set and VWN exchange functional. Energy levels where calculated with ZORA-DZ basis set for Ruthenium and the LB94 exchange functional with corrected asymptotic decay. Simulated absorption spectra was carried out with TDDFT-ALDA methodology. Results. On figure 1 the Molecular Orbital Diagram show how the HOMO level move to higher energies due to the presence of cyclometaleted ligand while the LUMO orbital remain unchanged. The net result is displayed in Figure 2 where one of the MLCT band of [Ru(Bpy)3]+2 appearing at 500 nm moved to 560nm on [Ru(Bpy)2Phpy]+ References [1] N. Robertson, Angw. Chem. Int. Ed. 2338,45,(2006) Acknowledgments. We would like to acknowledge Facultad de Quimica and Direccion de Investigacion de Post grado of Pontificia Universidad Catolica 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 58 Poster 28 A theoretical model to study the Maillard reaction: Schiff base formation. Patricio Flores Morales1,2, Eduardo Silva1, Soledad Gutiérrez-Oliva2, and Alejandro Toro-Labbé2. 1 2 Laboratorio de Química Biológica (QBUC), Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile. Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile. The Maillard reaction and Advanced Glycation End Products (AGEs) formation has been the subject of intense literature scrutiny [1]. This reaction involves an ε-amino group of lysine aminoacid in a protein, and a sugar like glucose or threose. The AGEs are cross-linked proteins which are the cause of many diseases, including cataract formation. Attempts to theoretically describe the first step of Maillard reaction (Schiff base formation) has been made at ab initio and Density Functional Theory (DFT) calculations [2-3], although this is the first attempt of using conceptual DFT combined with the chemical force profile [4-6] to rationalize the reaction (Figure 1). REACTANT TS PRODUCT Figure 1. Reaction between methylamine and 2-hydroxypropanal. Formation of a carbinolamine, previous to Schiff base. The Schiff base formation reaction between methylamine and 2-hydroxypropanal has been studied using DFT calculations at the B3LYP level with a 6-311G* basis set, the mechanism is explained in terms of the behavior along the reaction coordinate of chemical potencial, hardness and electronic local properties. The results show the quantification of works along the reaction path for the Schiff base formation. In addition, the global and local properties have been monitored, through electronic and structural changes to characterize the mechanism of this reaction. [1] [2] [3] [4] A. W. Stitt, Ann. N.Y. Acad. Sci. 1043 (2005) 582-597. N. E. Hall and B. J. Smith, J. Phys. Chem. A, 102 (1998) 4930-4938. A. Salvà, J. Donoso, J. Frau and F. Muñoz, J. Phys. Chem. A, 107 (2003) 9409-9414. P. Politzer, A. Toro-Labbé, S. Gutiérrez-Oliva, B. Herrera, P. Jaque, M. Concha and J. S. Murray, J. Chem. Sci. 117 (2005) 467-472. [5] S. Gutiérrez-Oliva, B. Herrera, A. Toro-Labbé and H. Chermette, J. Phys. Chem. A, 109 (2005) 1748-1751. [6] A. Toro-Labbé, S. Gutiérrez-Oliva, M. Concha, J. S. Murray and P. Politzer, J. Chem. Phys. 121 (2004) 4570. Acknowledgments. Financial support from FONDECYT through projects N◦ 1060590 and 1050965, and project CONICYT-Bicentenario N◦ 8 is gratefully acknowledged. P. Flores M. wants to thank to CONICYT for a doctoral fellowship and Dr. Pablo Jaque for helpful discussion. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 59 Poster 29 Optical Properties of Mo6I142- Cluster Rodrigo Ramirez-Tagle, Ramiro Arratia-Pérez Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales. Universidad Andrés Bello. República 275, Santiago, Chile. [email protected], [email protected] The development of novel inorganic materials of technological interest certainly requires an understanding of the electronic structure, spectroscopy, photophysical and structural properties of metal clusters. In particular the Mo6X142- (X= Cl, Br) cluster ions exhibit interesting spectroscopic and photophysical properties, and represent a new class of photoreceptors for light-induced chemical reactions. Moreover, they are chemically stable under a variety of conditions, and they undergo facile electron-transfer reactions in their ground and excited states.1 Based on these properties, a optical fiber based oxygen sensor for power plant applications have been developed; where it is observed that the luminescence signal increases with decreasing oxygen concentration.2 We report the geometry optimizations of the Mo6I142- cluster6 in vacuum, which were carried out using the Amsterdam density functional code (ADF).3 We calculated the cluster excitation energies using time-dependent perturbation density functional theory approach (TDDFT)4,5 including solvent effects to rationalize their optical spectra. Our calculated values on the LMTC transitions and the oscillator strengths of Mo6I142- suggest that this anion could be luminescent . Acknowledgment. This work has been supported in part by Fondecyt No.1030148, UNAB-DI 12-04, and the Millennium Nucleus of Applied Quantum Mechanics and Computational Chemistry, P02-004-F. (1) A.W. Maverick, J.S. Najdzionek, D. Mackenzle, D.G. Nocera , H.B. Gray , J. Am. Chem. Soc., (1983) 105 , 7 , 1878. (2) R.N. Ghosh, G.L. Baker, C. Ruud, D.G. Nocera, App. Phys. Lett. (1999) 75 , 19 , 2885. (3) Amsterdam Density Functional (ADF) code , release 2004 , Vrije Universiteit , Amsterdam , The Netherlands. (4) M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys. (1998) 108 , 4439. (5) E van Lenthe , J.G. Snigders, E.J. Baerends, J. Chem. Phys. (1996) , 105 , 15 , 6505. (6) K. Kirakci, S Cordier , C Perrin , Z. Anorg. Allg. Chem. , (2005),631,411. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 60 Poster 30 Relativistic Electronic Structure of Anionic Icosahedral Cage Clusters [M@Au12]— M = Nb, Ta, W, Pd and Au L. Hernández-Acevedoa and R. Arratia-Perezb a b Av. Los Libertadores, El Monte, Región Metropolitana, Chile. [email protected] Departamento de Ciencias Químicas, Universidad Andres Bello, República 275, Santiago, Chile. [email protected] Gold clusters and metallic nanoparticles posses remarkable catalytic properties and potential applications in nanoelectronics and nanosensors (see, in M. Haruta, Catal. Today 36, 153 (1997). The chemistry of gold is dominated by strong relativistic effects and the aurophilic attraction.1 In previous studies on neutral Pd@Au12 we have shown that Pd atom located in the center of the icosahedral (Ih) Au12 cage increases the softness (S) of the cluster compared against the icosahedral Au13 cluster. In fact, S = 4.0 eV-1 for Pd @Au12, while S = 3.4 eV-1 for Au13.2 Two years ago Wang et al. reported the observation and characterization of stable bimetallic 18valence-electron icosahedral gold clusters with an encapsulated central heteroatom of transition metals, namely, [M@Au12]− Μ = V, Nb and Ta,3 where the electronic properties of these clusters were probed by anion photoelectron spectroscopy. Here we report the electronic structure and density of states (DOS) of these clusters obtained by the Dirac Scattered Wave (DSW) four-component method. These results are compared against twocomponent relativistic calculations and against their observed photoelectron spectra. Acknowledgements: We thank Fondecyt 1030148, UNAB DI-12-04, and the Millennium Nucleus of Applied Quantum Mechanics and Computational Chemistry (P02-004-F) for their support. References 1 P. Pykko, Angew. Chem. Int. Ed. 43, 4412 (2004). 2 R. Arratia-Pérez, L. Hernández-Acevedo Chem. Phys. Lett. 303, 641 (1999). 3 H-J. Zhai, J. Li, L-S. Wang, J. Chem. Phys. 121, 8369 (2004). 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 61 Poster 31 Structure-Antioxidant Activity Relationships of Flavonoids Rodrigo Ramirez–Taglea, Wilson Cardona-Villadab, Héctor Carrasco-Altamiranob, Claudio Gallardob, Alvaro Aballayc, Francisco Cañasb y Luis Espinoza-Catalánc. a b c Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales. Universidad Andrés Bello. República 275, Santiago, Chile. [email protected] Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales. Universidad Andrés Bello. Los Fresnos 52, Viña del Mar, Chile. Departamento de Química, Universidad Federico Santa María. Avenida España 1680, Valparaíso, Chile Flavonoids belong to a group of naturally occurring compounds with a large number of biological activities, the antioxidant activity arises from flavonoids ability to scavenge free radicals and thus eliminate reactive oxygen species.1 The mechanism by which antioxidant can play their protective role has been proposed,2 the free radical removes a hydrogen atom from the antioxidant (ArOH) that itself becomes a radical: R* + ArOH → RH + ArO* This mechanism is referred to an H-atom transfer. A higher stability of the radical ArO* correspond to a better efficiency of the antioxidant ArOH, so that it is unlikely to react with the substrate. In this mechanism the bond dissociations enthalpy (BDE) of the O-H bond is an important parameter in evaluating the antioxidant action, because the weaker the OH bond the easier will be the reaction of free radical inactivations.3 We report the predicting activity of flavonoids antioxidant and analysis of R-substituent effects on the hydroxyl group. (Fig 1). Theoretical calculations were done by using density functional theory (DFT) with a hybrid functional including a mixture of Hartree-Fock exchange with DFT exchange correlation. All quantum chemistry calculations were performed with Gaussian 034 and B3LYP/631G* basis set. The ∆E of dehydrogenation were determined by calculating the differences between radicals and their parent flavonoids. Radicals were constructed by an abstraction of hydrogen atom from the corresponding hydroxyl moiety. All products are been synthesized in our laboratory in order to evaluate their antioxidant activity. OMe MeO O R OMe OH O R: H; NO2; NH2; NHCH3; NHCOCH3; OH Figure 1. Structures of Flavonoids (1) P-G Pietta, J. Nat.Prod. , 2000, 63, 1035 J.S. Wright, E.R Johnson, G.A. DiLabio, J. Am.Chem.Soc., 2001 123, 1173 (3) M. Leopoldini, T. Marino, N. Russo, M. Toscano, J.Phys.Chem. A, 2004, 108, 4916. (4) Frisch, M. J.; et al. Gaussian 03. (2) 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 62 Poster 32 Study of the aromaticity development in the trimerization reaction of mono-substitued acetylene analogs Oscar Donoso-Tauda, Carlos A. Escobar and Juan C. Santos* Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello. Av. República 275, Santiago, Chile. [email protected] We have studied theoretically the reaction mechanism and the aromaticity development in the trimerization reaction of mono-substituted acetylenes (see Scheme 1). All the structures analyzed were obtained in the framework of density functional theory using B3LYP/6-311G* level of theory. The electronic study was done using the electron localization function, ELF,1 which determines the domains of structural stability of the ELF topology along the intrinsic reaction path. H X X X X H H X X X=F, CN, CHO,OH Scheme 1. Trimerization reaction of acetylene analogs The activation barrier for the trimerization reaction is 43.0, 45.2, 47.1 and 58.0 kcal/mol forX= F, CO, OH and CN, respectively. The low energy barrier in the F substituted acetylene can be attributed to a lower steric effect and also to a stabilizing interaction produced by a in-plane inductive effect, where the sigma bond is being formed. The main contributions from the other sustituents are produced out-of-plane via resonance. The analysis of the ELF separated into in-plane, ELFσ and out-of-plane, ELFπ2 contributions shows that π aromaticity is developed at the final stage of the reaction and that the transition structures have only low σ electron delocalization, this last being the most affected by the substituents inductive effect. Acknowledgements. Millennium Nucleus for Applied Quantum Mechanics and Computational Chemistry, Nº P02-004-F (Mideplan-Conicyt) and Dirección General de Investigación, UNAB Grant DI-22-05/R. O. D. thanks to UNAB for graduate fellowship. References 1 A. D. Becke, K. E. Edgecombe, J Chem Phys., 92, 5397, 1990 2 Juan C. Santos, Juan Andres, Arie Aizman, and Patricio Fuentealba, J. Chem. theory and comp., 1, 83, 2005 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 63 Poster 33 Four component calculation of Nuclear magnetic shieldings for Interhalogen molecules. Spin orbit and spin free relativistic effects Sergio S. Gomez and RamiroArratia-Perez Facultad de Ecologia y Recursos Naturales, Universidad Andrés Bello. [email protected] There is an increasinginterest in understandingthe electronic origin of relativistic effects in nuclear magnetic shielding tensor σ(N) of the NMR spectra. The Heavy Atom on Light Atom(HALA) effect, which is the relativistic modification of σof the light atom due to the heavy atom in the molecule, can be explained trough the Spin Orbit mechanism(SO)(1). On the other hand there is a relativistic effect on the Heavy Atom due to the Heavy Atom(HAHA) itself, whose origin was proposed recently in terms of the paramagnetic Mass Velocity External Field(MVEF) mechanism. Previous calculations of this terms in molecules containing Hydrogen and one heavy atom shows that indeed this mechanism account for more than 90% of the relativistic corrections of the paramagnetic part of σ at the heavy atom, regardless the structure of the molecule(2,3). However, in this presentation we show trough ab-initio four components calculations with FX(X=F,Cl,Br,I), how the inclusion of Fluoride instead of Hydrogen in the molecule enhances the Spin Orbit contribution to a value of the order of MVEF term. This results suggest that the interpretation of HAHA effect as MVEF mechanism should be taken carefully. Bibliography (1) M. Kaupp, O.L. Malkina, V. G. Malkin and P. Pyykko, Chem. Eur. J. 4, 118(1998) (2) L. Visscher, T. Enevoldsen, T. Saue, H. J. Aa Jensen, J. Oddershede, J.Comp. Chem. 20, 162(1999). (3) Sergio S. Gomez, Rodolfo H. Romero and Gustavo A. Aucar, Chem. Phys. Lett 367, 265(2003). Acknowledgements. Núcleo Milenio P02-004-F and Facultad de Recursos Naturales, UNAB. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 64 Poster 34 Estructura electrónica y propiedades fluorescentes de 5-metoxi-6-hidroxi-7 H-dibenzo[de,h] quinolin-7-ona en solución Victoria Ortega V, Víctor Vargas C. y Julio De La Fuente Laboratorio de Luminiscencia y Estructura Molécular, Departamento de Química, Facultad de Ciencias, Universidad de Chile. Casilla 653, Santiago, Chile. [email protected] Las oxoisoaporfinas son especies moleculares pertenecientes a la familia de derivados alcaloides oxoisoquinolinas. Del punto de vista de la estructura electrónica, estas especies se caracterizan por la presencia de electrones no enlazantes en el átomo de oxígeno ceto, lo que generan estados electrónicos excitados de naturaleza n,π* y π,π*, otorgando a estos sistemas interesantes propiedades luminiscentes, las que con frecuencia pueden ser moduladas por la naturaleza polar del medio. La especie 5-metoxi-6-hidroxi-7 H-dibenzo[de,h] quinolin-7-ona, (DBQ), mostrada en la Figura 1, presenta un enlace de hidrógeno intramolecular entre dos átomos de oxígeno, cuyo equilibrio puede originar la presencia de especies tautoméricas ceto y enol OMe H O O H OMe O O N N Figura 1. Estructura de 5-metoxi-6-hidroxi-7 H-dibenzo[de,h] quinolin-7-ona En esta trabajo presentamos un estudio de la estructura electrónica de las diferentes especies tautoméricas de DBQ, con el objeto de dilucidar el rol que desempeña los estados electrónicos de naturaleza n,π* y π,π* y el enlace de hidrógeno de hidrógeno intramolecular, en las propiedades fluorescentes de DBQ en función de la propiedad polar de solventes no acuosos y del pH del medio en solución acuosa. Del punto de vista experimental el estudio se lleva a cabo empleando técnicas espectroscópicas de absorción y fluorescencia de estado estacionario, donde se determinan parámetros como longitud de onda de los máximos de absorción, emisión y los rendimientos cuánticos de fluorescencia. Los parámetros cinéticos, como las constantes de velocidad de desactivación radiativa y no radiativa, son determinados a través del tiempo de vida de fluorescencia, medidos mediante la técnica de corrimiento de fase y modulación en función de la frecuencia de modulación de la radiación incidente. Del punto de vista teórico, el estudio realizado es apoyado por cálculos semiempíricos y Ab-initio de orbitales moleculares, con el objeto de analizar distribución de la nube electrónica de la diferentes especies tautoméricas, tanto en el estado fundamental y primer estado excitado. Agradecimientos. Proyecto Interno, Facultad de Ciencias, Departamento de Química, Universidad de Chile (2005-2006). 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 65 Poster 35 The Intrinsic reactivity of Histamine with H2 and H3 Receptors using conceptual DFT. José Vicente Correa y Alejandro Toro-Labbé QTC, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile. Histamine, 1H-imidazole-4(5)ethanamine is a biogenic amine. In recent years it was proposed an interaction mechanism with the H2 receptor consisting in three specific regions able for binding, thus allowing the tautomeric interconversion of Histamine. Figure 1: Conformational equilibria of Histamine. In this work we will focus our attention in the characterization of the conformational dependence of the intrinsic reactivity of Histamine using DFT-based index such as chemical potential (µ), molecular hardness (η) and electrophilicity index(ω). Reaction force profile along torsional angles confirms the specific geometry of the tautomer able to interact with the receptor. The results suggest that Histamine binds to the receptor as through an electronic transfer process that occurs while histamine is in the extended conformation. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 66 Poster 36 New shape descriptor derived from the Gyration tensor Verónica Jiménez and Joel B. Alderete Organic Chemistry Department, Universidad de Concepción, Casilla 160-C, Concepción, Chile In this work, we introduce a new shape descriptor F derived from the molecular gyration tensor, in order to account for the mass distribution in the molecular plane of aromatic compounds. The gyration tensor G for a system with N components is a symmetrical second-order tensor, whose elements are defined as: ⎡ S xx ⎢ G = ⎢ S yx ⎢ S zx ⎣ S xy S yy S zy S xz ⎤ ⎥ S yz ⎥ S zz ⎥⎦ and S ij = 1⎛ N ⎞ ⎜ ∑ ia j a ⎟ N ⎝ a =1 ⎠ i , j = x, y , z (1) The diagonalization of G provides eigenvalues (Si) and eigenvectors (vi), corresponding to the principal moments of gyration and the coordinates of the principal symmetry axes of the molecule, respectively. From a statistical point of view, the eigenvalues Si represent the square of the standard deviation of the atomic coordinates of the molecule in the principal axes system. ⎡ S1 S = ⎢⎢ 0 ⎢⎣ 0 0 S2 0 0⎤ 0 ⎥⎥ S 3 ⎥⎦ such as S1 ≤ S 2 ≤ S 3 and ⎡ v1 ⎤ V = ⎢⎢v 2 ⎥⎥ ⎢⎣v3 ⎥⎦ T (2) The eigenvalues Si provide valuable information about the spatial distribution of nucleus in a molecule. In the case of systems with spherical symmetry S1=S2=S3, whereas for cylindrical molecules S1=S2<S3. In the particular case of planar molecules, S1=0. Herein we propose that the mass distribution in the molecular plane of aromatic systems, can be represented by a shape index F defined as F= S2 S3 where F ≥1 (3) If the planar mass distribution is symmetric, F will be equal to one. Otherwise, F will be larger than one, in accordance with the preferred mass distribution along one of the principal axes located in the molecular plane. As shown in Figure 1, F is useful to account for the molecular shape change arising from o-, m- and p-substitution in aromatic compounds. In addition, it has been observed that the higher the molecular elongation degree, the larger the value of F. Figure 1. Calculated shape index F for o-, m- and p-xilene In the present work we implemented a MATLAB routine to calculate F from the molecular standard 3D-cartesian coordinates. Further, the F index has been employed as a shape descriptor to account for the chromatographic retention times of several aromatic molecules. It has been found that F successfully describes shape change effects on the chromatographic behaviour of aromatic compounds. References. 1. D.N. Theodorou, U.W. Suter, Macromolecules 18, 1206 (1985) 2. S. Rayne, M.G. Ikonomou, J. Chromat. A, 1016, 235 (2003) 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 67 Poster 37 Theoretical Study of the Solvent Effect in Amino-Imino Tautomerism in Water Solution William Tiznado, Edwin Perez Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile. [email protected] The relative stabilities of tautomers of 2—aminothiazolidine-4-one and 4-aminothiazolidine-2-one considering their mono and trihydrated complexes have been calculated by Vanelin Enchev et al1, at MP2/6-31+G(d,p) level of theory. They found that in absence of water the process of proton transfer should no occur. When they add water molecules to help the transference it decreases the energy barrier making the process faster. To simulate the effect of the solvent the authors used the polarizable continuum model (PCM). Taken these results as material to comparison we applied a discreet model to simulate the solvent effect. To include the water molecules of solvent in our model the ONIOM2 method was applied, this methodology gives us the possibility of combine different levels of quantum chemical methods as well as molecular mechanics methods in the same calculus. In this work we have combined ab-initio MP2/6-31+G(d,p) calculus to the substrate including the solvent molecules which participate directly in the proton transference and UFF molecular mechanics calculations to the solvent water molecules. We compare the effect of the model applied in the energy barriers for the proton transference and compare these with the experimental reported dates. Acknowledgments. Work supported by Millennium Nucleus for Applied Quantum Mechanics and Computational Chemistry (Mideplan-Conicyt, Chile), grant P02-004-F. 1 2 V. Enchev, N. Markova, S. Angelova, J. Phys. Chem. A, 109, 8904 (2005). M. Svensson, S. Humbel, R. Froese, T. Matsubara, S. Sieber, K. Morokuma, 100, 19357 (1996). 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 68 Poster 38 Development of software for visualization and evaluation of protein sequence alignments and structural models, and for the visualization of data from various protein analyses tools Mera-Adasme, Raúl1, Briones-Jerez, Rodolfo1, Olea-Azar, Claudio1, Mendizabal, Fernando2 1 2 Facultad de ciencias químicas y farmacéuticas, Universidad de Chile Facultad de ciencias, Universidad de Chile The sequence alignment is the key phase for protein homology modeling, and, although there are applications to produce alignments, it is usually needed to correct the program's output manually. Here we present a tool developed to easy this process by allowing to visualize the structural context of an alignment. Considering that visualization is often the best way to appreciate the structural significance of the description of some protein's characteristics, and relations among them, we also present applications developed for analyses of data from external programs (Qcontacts[1], for analyses of protein interfaces, CAVER[2] and HOLE[3], both for analyses of protein cavities) which allows to graphically display the results with the PyMOL[4] molecular visualization program. The three applications support the analyses of data for several snapshots of a trajectory, thus rendering an animation. Applications: The applications presented in this work are : Sguallino: A tool for graphical evaluation of protein sequence alignments for homology modelling, allowing to observe the gaps and the alignment quality in the context of the 3D structure of the template (Figure 1) CaverAnalyzer and HoleAnalyzer: Tools for graphically displaying (using the PyMOL visualization program) descriptions of protein cavities obtained with the CAVER and HOLE programs, respectively. QconsAnalyzer: An applications for graphically displaying descriptions of protein-protein interfaces. It uses data from the Qcontacts software and the PyMOL program. Acknowledgments: The authors want to manifest their gratitude to the PyMOL community, in particular to Dr. Warren DeLano, for their help with the PyMOL API, and also to Dr. Jerry Tsai, who kindly provided us with his Qcontacts application. References: 5. Fisher, TB, Holmes, JB, Parsons, JR, Tung, L, Hu, JC, Tsai, J, (2003), J Struct Biol, 153, 103-112. 6. Petřek, M, Otyepka, M, Banáš,P, Košinová, P, Koča, J, Damborský, J, (2006), BMC Bioinformatics, 7, 316. 7. Smart, OS, Goodfellow, JM, Wallace, BA (1993), Biophys J, 65 2455-2460. 8. DeLano, WL, The PyMOL Molecular Graphics System, (2002) on World Wide Web http://www.pymol.org 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 69 Poster 39 Quantum Calculations on the Selectivity Filter of a Potassium Channel Mario A. Duque-Noreña, Eduardo E. Chamorro Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Av. República, 275, Santiago, Chile Keywords: Potassium Channel, Quantum Calculations, Selectivity Filter Quantum calculations have been performed in the selectivity filter of a potassium channel1. The backbone has been taken as the four subunits which conforms the molecule, including ions K+ or Na+ in different positions. This simulate the passage of the ion through the structure (see Figure). The conformational and coordination changes which undergo the carbonyl groups during the travel of ions have been discussed. In addition, the role of carbonyl groups in the observed selectivity are analyzed. 4 Figure. Only two subunits are depicted for clarity. The steps of the movement of the ion are indicated, from the S00 to S09 position. M1 and M2 corresponds to the positions of Na+ or K+. The arrows shown the atoms that are moving together. Acknowledgements. This work has been supported by Fondecyt (Chile), grant 1030173 and the Millennium Nucleus for Applied Quantum Mechanics and Computational Chemistry (Mideplan-Conicyt, Chile), grant P02-004-F. We thank the Universidad Andres Bello (UNAB) by support through the Project UNAB-DI 16-04. References 1. Doyle, D. A., Morais, Cabral J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. Science. 1998, 280, 69. 2. Noskov, S. Y., Berneche, S., and Roux, B. Nature. 2004, 431, 830. 3. Asthagiri, D., Pratt, L. R., and Paulaitis, M. E. Journal of Chemical Physics. 2006, 125, 4. Huetz, P., Boiteux, C., Compoint, M., Ramseyer, C., and Girardet, C. J.Chem.Phys. 2006, 124, 044703. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 70 Poster 40 Una Aproximación Teórica para la Inhibición contra el Tipo Silvestre y Mutantes Virales de la Transcriptasa Reversa del VIH-1 por una serie de derivados de la Tiazolidenbencensulfonamida. Francisco Soto-Morales1 y Juan Sebastián Gómez-Jeria2. 1 2 Programa de Doctorado en Fisicoquímica Molecular. Universidad Andrés Bello, Facultad de Ecología y Recursos Naturales, Departamento de Ciencias Químicas, República 275, Santiago, Chile. Facultad de Ciencias, Departamento de Química, Casilla 653, Santiago, Chile. El sello de los retrovirus es la enzima transcriptasa reversa (TR) que es el más antiguo y uno de los principales blancos de la terapia contra el VIH-1. Estos inhibidores pueden ser clasificados dentro de dos grupos: los inhibidores análogos de nucleósidos (IN), los cuales actúan competitivamente en el sitio catalítico de la enzima bloqueando la elongación o producción de ADN a partir del ARN viral y los inhibidores no-análogos de nucleósidos (INN), que inhiben la TR uniéndose en un sitio alostérico cercano al sitio activo de la polimerasa. Los primeros exhiben diferentes grados de toxicidad a nivel celular. Los segundos son más específicos y menos tóxicos. Sin embargo, los INN inducen frecuentemente mutaciones virales, siendo las más características las mutaciones en los residuos de los amino ácidos Lys103 a asparagina (mutante K103N) y Tyr181 a cisteína (mutante Y181C), respectivamente. Por lo tanto es importante encontrar nuevos compuestos que puedan ser capaces de superar la resistencia viral y que posean una alta capacidad inhibidora contra la TR. Entre las moléculas que presentan una buena inhibición de la TR están los TBS, que representan una nueva serie de INN de segunda generación. Se ha llevado a cabo un estudio de las relaciones entre la estructura electrónico-molecular y la inhibición de la TR. Se ha empleado el método KPG, el cual garantiza la obtención de buenos resultados dada su base físico-matemática. Se seleccionaron una serie de derivados de TBS activos contra el tipo “silvestre” (wild-type) de TR (WT-TR), contra el mutante K103N TR y contra el mutante Y181C TR. La geometría molecular fue completamente optimizada con el método AM1. Las correspondientes funciones de onda se obtuvieron con el método ZINDO/1. A partir de las funciones de onda se obtuvieron todos los índices de reactividad de los átomos de un esqueleto común a todas las moléculas. Finalmente se llevó a cabo un análisis de regresión lineal múltiple con la constante de inhibición como variable dependiente y los descriptores atómicos del esqueleto común como variables independientes. Se obtuvieron tres ecuaciones estadísticamente significativas que reflejan la variación de la constante de inhibición en función de la variación de algunos índices de reactividad del esqueleto común. Se propone un mecanismo de inhibición y se comparan los resultados con la literatura existente. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 71 Poster 41 Ab initio Calculations on Interstellar Molecules N. Inostroza1*, P. Fuentealba2, J. R. Letelier3 1 2 3 Facultad de Ecología y Recursos Naturales, Doctorado en Fisicoquímica Molecular, Universidad Andrés Bello Facultad de Ciencias, Dpto. de Física, Universidad de Chile Facultad de Ciencias Físicas y Matemáticas, Dpto. de Química, Universidad de Chile The interstellar medium (ISM) is of vital importance for the galactic evolution. Stars are formed in this ISM and the heavy-element enriched matter is given back to this medium. This is essential for both the formation of planets and for the development and evolution of life. In the ISM have been detected around 120-1301 molecules which exist in extreme conditions not found in our planet. From this point of view, quantum chemistry calculations contributes with significant theoretical information about this type of interstellar molecules. The recent astronomical detection2 of the CF+ ion (fluoromethylidynium ion) have caught our attention. This ion is a typical intermediary in the chemistry of fluorocarbons and is frequently used in semiconductor devices and for this reason this cation is considered technologically quite interesting. In the present work, the potential energy curve (as a function of the internuclear distance R) of the ground electronic state X1Σ+ was calculated by the MRCI/AVTZ method., allowing the numerical resolution of the centrifugally-distorted Schrödinger equation3. For each value of J, a set of rovibrational energies {Eν,J} was calculated. Considering this, some of the most important bands of the spectrum and spectroscopic constants have been calculated for CF+. 1. 2. 3. Helger S. P. Muller, Frankschoder, Jurgen Stutzki, Gisbert Winnewiser, Journal of Molecular Structure 742, 215-227, (2005) D.A.Neufeld et al., Astrochemistry: Recent Successes and Current Challenges Proceedings IAU Symposium No. 231, (2005). C. A. Ultreras-Diaz, J. R. Letelier, Computers chemistry 19, 39, (1995). Acknowledgements. The Millennium Nucleus for Applied Quantum Mechanics and Computational Chemistry P02-004-F 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 72 Part icipants page PARTICIPANTS Alvaro Aballay 62 Departamento de Química, Universidad Federico Santa María. Valparaíso, Chile. Rodrigo Acevedo 37 Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmaceúticas, Universidad de Chile, Santiago, Chile. E. Alarcón 39 Departamento de Química Biológica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile. Joel B. Alderete 27, 32, 67 Organic Chemistry Department, Universidad de Concepción, Concepción, Chile. Leonor Alvarado 49 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile. José Alvarez 55 Departamento de Ingeniería Informática, Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago, Chile. Luis Álvarez-Thon 56 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile. Jans H. Alzate-Morales 48 Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Mauricio Arias 58 Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile. Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile. 38, 39, 40, 50, 53, 56, 60, 61, 64 Mauricio Barrera 25, 58 Ramiro Arratia-Pérez Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile. Patrick Batail 12 Laboratoire Chimie, Ingénierie Moléculaire et Matériaux (CIMMA), UMR 6200 CNRS-Université d’Angers, France. Cristhian Berríos 18 Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile. Werner J. Blau 14 Professor of Materials Physics, Department of Physics, Trinity College, Dublin, Ireland. Daniel Borquez-Macherone 45 Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. S. Brauchi 28 Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile. Rodolfo Briones-Jerez 69 Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile. F. Burgos 38 Instituto de Química, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. Carlos Bustos 40 Instituto de Química, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. M. Campos-Vallette 52, 54 Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Francisco Cañas 62 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales. Universidad Andrés Bello, Viña del mar, Chile. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 73 Part icipants page Carlos Cárdenas 48 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales. Universidad Andrés Bello, Viña del mar, Chile. Gloria I. Cárdenas-Jirón 18, 57 Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile. Wilson Cardona-Villada 62 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales. Universidad Andrés Bello, Viña del mar, Chile. Héctor Carrasco-Altamirano 62 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales. Universidad Andrés Bello, Viña del mar, Chile. David Carrillo 33 Laboratorio de Química Inorgánica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile. Bruce K. Cassels 34 Laboratorio de Química Biodinámica, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. H. Cerecetto 35 Department of Organic Chemistry, Faculty of Sciences, University of the Republic, Montevideo, Uruguay. Eduardo Chamorro 41, 70 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile. Ivonne Chávez 38 Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile. Niels Egede Christensen 13 Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark. M. Leonor Contreras Laboratorio de Química Computacional, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile. Jorge David 47, 48, 51, 55 38, 50 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile. Julio De La Fuente 37, 65 Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmaceúticas, Universidad de Chile, Santiago, Chile. Eduardo J. Delgado 32, 46 Theoretical and Computational Chemistry Group, Faculty of Chemical Sciences, Universidad de Concepción, Concepción, Chile. Gerardo A. Díaz 46 Theoretical and Computational Chemistry Group, Faculty of Chemical Sciences, Universidad de Concepción, Concepción, Chile. Daniela Donoso 43 Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Oscar Donoso-Tauda 63 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile. Mario A. Duque-Noreña 70 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Av. República, 275, Santiago, Chile A. M. Edwards 39 Departamento de Química Biológica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile. Carlos A. Escobar 63 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 74 Part icipants page Luis Espinoza-Catalán 62 Departamento de Química, Universidad Federico Santa María. Valparaíso, Chile. Patricio Flores Morales 59 Laboratorio de Química Biológica (QBUC), Pontificia Universidad Católica de Chile, Santiago, Chile. Mauricio Fuentealba 19, 33 Laboratorio de Cristalografía, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile. Patricio Fuentealba 72 Departamento de Física, Facultad de Ciencias, Universidad de Chile Claudio Gallardo 62 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales. Universidad Andrés Bello, Viña del mar, Chile. A. M. García 39 Departamento de Química Biológica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile. María Teresa Garland 19 Laboratorio de Cristalografía, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile. Jorge Garza 20 Departamento de Química División de Ciencias Básicas e Ingeniería Universidad Autónoma Metropolitana-Iztapalapa, Mexico A. Gerpe 35 Department of Organic Chemistry, Faculty of Sciences, University of the Republic, Montevideo, Uruguay. Sergio S. Gómez 64 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile. Juan S. Gómez-Jeria Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. W. González Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile. 52, 53, 54, 71 28, 29, 35 Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile. 28, 29, 15 Doris Guerra 20, 50 Fernando Danilo González-Nilo Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile. Soledad Gutiérrez-Oliva 59 Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile. Lucía Hernández-Acevedo 61 Av. Los Libertadores, El Monte, Región Metropolitana, Chile. Carmen Herrera S. 24 Departamento de Ingeniería Química, Universidad Tecnológica Metropolitana, Santiago, Chile. Natalia Inostroza 72 Programa de Doctorado en Fisicoquímica Molecular. Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, República 275, Santiago, Chile. Gonzalo A. Jaña 32, 46 Theoretical and Computational Chemistry Group, Faculty of Chemical Sciences, Universidad de Concepción, Concepción, Chile. Paul Jara 42 Laboratorio de Síntesis Inorgánica y Electroquímica, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Paula Jaramillo 22, 36 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 75 Part icipants page Verónica Jiménez 27, 67 Organic Chemistry Department, Universidad de Concepción, Concepción, Chile. Carolina Jullian 30, 37 Departamento de Química Orgánica y Fisicoquímica. CEPEDEQ., Universidad de Chile, Santiago, Chile. Erika Lang 42 Centro de Equipamiento Mayor, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Robert Laskowski 13 Institute of Materials Chemistry, Technical University of Vienna, Austria. R. Latorre 28 Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile. J. Ricardo Letelier D. 24, 72 Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile. P. Leyton 52, 54 Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Barbara Loeb 58 Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile. D. Mac-Leod Carey Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile. 38, 39, 40 Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile. 38, 39, 40 Carolina Manzur 33 Juan M. Manríquez Laboratorio de Química Inorgánica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile. C. Mascayano 28 Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile. Fernando Mendizabal 69 Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Fernando Mendizábal 23, 43 Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Raúl Mera-Adasme 69 Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile. Juan Merchán 42 Laboratorio de Síntesis Inorgánica y Electroquímica, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. German Miño 47 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile. Sebastián Miranda-Rojas 30, 45 Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile. Otilia Mó 21 Departamento de Química, C-9. Universidad Autónoma de Madrid. Cantoblanco, 28049-Madrid. Spain. Sergio A. Moya 57 Laboratory of Coordination Chemistry and Catalysis, University of Santiago de Chile, Santiago, Chile. A. Muñoz 38, 40 Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile. Claudio Olea-Azar Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile. Walter Orellana 30, 35, 45, 69 26 Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 76 Part icipants page Teresita Orosteguis 30 Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile. G. Orta 28 Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile. Victoria Ortega V. 65 Laboratorio de Luminiscencia y Estructura Molecular, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Verónica Paredes-García 18 Faculty of Natural Sciences, Mathematics and Environment, Metropolitan Technological University, Santiago, Chile. Edwin Pérez 68 Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Patricia Pérez 22, 41 Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Edwin G. Pérez Hernández 34 Laboratorio de Química Biodinámica, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Hernán Pessoa 37 Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmaceúticas, Universidad de Chile, Santiago, Chile. Max Quinteros 58 Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile. N. Raddatz 28 Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile. Rodrigo Ramirez-Tagle 60, 62 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile. Elizabeth Rincón B. 21 Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile. Jorge Rodríguez 35, 44 Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile. Franklin Rosales-Salazar 18 Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile. Roberto Rozas 55 Laboratorio de Química Computacional, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile. G. Saavedra 29 Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile. Jean Yves Saillard 11 UMR 6226 Sciences Chimiques de Rennes, Université de Rennes 1, 35042 Rennes Cedex, France. Claudio Saitz 37 Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmaceúticas, Universidad de Chile, Santiago, Chile. Constain H. Salamanca 36 Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Juan C. Santos Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile. Eduardo Silva 48, 49, 63 59 Laboratorio de Química Biológica (QBUC), Pontificia Universidad Católica de Chile, Santiago, Chile. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 77 Part icipants page Jorge Soto-Delgado 51 Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Francisco Soto-Morales 71 Programa de Doctorado en Fisicoquímica Molecular. Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, República 275, Santiago, Chile. Orlando Tapia 10 Department of Physical and Analytical Chemistry, Uppsala University, Box 579. S-751 23 Uppsala, Sweden. Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. 22, 47, 48, 68 Alejandro Toro-Labbé 21, 59, 66 William Tiznado Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile. H. Urbina 28, 29 Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile. Rubicelia Vargas 20 Departamento de Química División de Ciencias Básicas e Ingeniería Universidad Autónoma Metropolitana-Iztapalapa, Mexico Víctor Vargas C. 65 Laboratorio de Luminiscencia y Estructura Molecular, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Sergio O. Vásquez A. 17 Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile. Andrés Vega 33 Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile. Diego Venegas-Yazigi 18 CIMAT, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile. José Vicente Correa 66 Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile. M. Vidal 29 Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile. Mauricio Yañez 57 Laboratory of Coordination Chemistry and Catalysis, University of Santiago de Chile, Santiago, Chile. Manuel Yáñez 21 Departamento de Química, C-9. Universidad Autónoma de Madrid. Cantoblanco, 28049-Madrid. Spain. Nicolás Yutronic 42 Laboratorio de Síntesis Inorgánica y Electroquímica, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. Gerald Zapata-Torres Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile. 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 30, 34, 45, 42, 44 78 Index Index Preface 1 J.J. Thomson 2 Sponsors 3 Program 4 Plenary Lectures 9 Chemical Quantum Diabatic States Approach as Complementary to Adiabatic BO procedures: On the he role of spin-orbit interaction in chemical dynamics and reaction mechanisms 10 Pentalene and Acepentalene Coordination to Transition Metals: a DFT analysis 11 The Many Faces of the Materials Chemistry and Physics of the Organic-Inorganic Interface 12 Ab initio calculations optical properties including e-h correlations 13 Molecular assembly and templating for nanotechnology 14 Simulación Molecular de Proteínas Transmembranales 15 Oral Lectures 16 Inclusion of oligomers in PHTP nanochannels. Conformational and spectroscopic aspects using ONIOM and time dependent methodologies. 17 Rationalization of Charge Transfer Mechanisms Involving Porphyrin Derivatives Metal Complexes 18 Density Functional Theory Studies on Ferrocenyl-Diimine Complexes 19 Multiplicity changes in atoms under pressure 20 Effect of Ni(II), Cu(II) and Zn(II) Association on the keto-enol Tautomerism of Thymine 21 Theoretical Study of Aromatic Transition State and the Α-Effect 22 Theoretical Study on the Electronic Spectrum of Bi- and Tri-nuclear Pt(II)-Au(I), Pt(II)-Ag(I), Pt(II)-Pt(II) and Pt(II)-Pd/II) Complexes 23 A Molecular Model Potential Study of Molecular Wires 24 Orbital Hardness in Single Monoatomic Anions 25 Fe adatoms along Bi nanolines on H/Si(001): Patterning atomic magnetic chains 26 Procrustes analysis in the study of geometrical similarity effects 27 Simulación Molecular de la Interacción entre PIP2 y el canal TRPV1. (Molecular simulation of the PIP2TRPV1 channel interaction.) 28 Análisis Estructural del Poro del Canal de K+ HSLO a Través de Simulaciones de Dinámica Molecular. 29 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 79 Index NMR and Molecular Modeling studies of cyclodextrin-catechin complexes Posters 30 31 A First Approximation for the Elucidation of the Inhibition of Acetohydroxyacid synthase (AHAS) by Chlorimuron Ethyl 32 A Density Functional Theory Investigation of a Ferrocenyl Ketoamine and Their Derivatives 33 Design of Possibles Nicotinic Acetylcholine Receptor Ligands 34 ESR and theoretical of 5-nitroindazole derivatives as potential antiparasitic drugs. 35 Experimental and theoretical study of N-alkylation of nitroimidazoic ring with alkyl halides 36 Studies of Chiral Recognition Properties by NMR of Novel Bridged Thiourea Chiral Calix[4]arenes 37 [Cp*-Ru-Indacene-Ru-Cp*]+Electronic Structure of a Mixed Valence Organometallic System 38 Effect of Peripheral or Non Peripheral Substitution Upon The Spectroscopic Properties of Zinc Phthalocyanine. 39 π Donor / Acceptor Effect on Lindqvist type Polyoxomolybdates Functionalizated with Multiple-Bonding Nitrogeneous Ligands 40 Electrophilicity and spin polarization within the framework of spin-polarized density functional theory 41 2D-ROESY NMR Studies and Molecular Modeling of Supramolecular Complexes of αCDDIALKYLAMINES 42 Theoretical Study in [C2H4-Tl]n+ and [C2H2-Tl]n+ (n = 2, 3) Complexes 43 Molecular Modeling of 5-HT2 receptors 44 Molecular modeling study on the interaction of Fe65 PTB2 Domain and AICD complex 45 Prediction of Octanol-Water Partition Coefficients of Chlorinated Biphenyls by Molecular Descriptors. 46 Nucleophilic Activation Of Charged Systems: Carbon Nanotube v/s Dielectric Models 47 Theoretical Study on CDK2 Inhibitors Using a Global Softness Obtained from the Density of States 48 Study of aromaticity of planar carbon clusters through the topological analysis of electron localization function 49 Calculated Relativistic Nuclear Magnetic Shieldings on monohalides of noble metals 50 Endo/Exo Selectivity in Intermolecular Diels-Alder Reactions 51 Humic Acids As Molecular Assemblers in Sers Detection of Polycyclic Aromatic Hydrocarbons 52 On The “Metallicity” of Some Metallic Nanotubes 53 Carbon Nanotube as Molecular Assemblies: Surface-Enhanced Resonance Raman Spectroscopy (SERRS) and Theoretical Studies 54 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 80 Index Multiple Linear Regression Study of the Antimalarial Activity of Aziridinyl 1,4-Naphthoquinonyl Sulfonate and Acylate Derivatives 55 Ab initio All-Electron Relativistic Calculations on the Series of [Re(CN)6]n- Complexes (n = 1 to 5). 56 Theoretical-Experimental Correlation by Spectroscopy UV-Visible of [RuH(CO)(dppz-R)(PPh3)2]+ Complexes (R= Cl, Me, H) 57 Electronic Structure of [ 4.4’-R(bpy)2 Ru Phpy] +bpy=2,2’bypiridine , Phpy= Phenyl pyridine 58 A theoretical model to study the Maillard reaction: Schiff base formation. 59 Optical Properties of Mo6I142- Cluster 60 — Relativistic Electronic Structure of Anionic Icosahedral Cage Clusters [M@Au12] M = V, Nb and Ta 61 Structure-Antioxidant Activity Relationships of Flavonoids 62 Study of the aromaticity development in the trimerization reaction of mono-substitued acetylene analogs 63 Four component calculation of Nuclear magnetic shieldings for Interhalogen molecules. Spin orbit and spin free relativistic effects 64 Estructura electrónica y propiedades fluorescentes de 5-metoxi-6-hidroxi-7 H-dibenzo[de,h] quinolin-7-ona en solución 65 The Intrinsic reactivity of Histamine with H2 and H3 Receptors using conceptual DFT. 66 New shape descriptor derived from the Gyration tensor 67 Theoretical Study of the Solvent Effect in Amino-Imino Tautomerism in Water Solution 68 Development of software for visualization and evaluation of protein sequence alignments and structural models, and for the visualization of data from various protein analyses tools 69 Quantum Calculations on the Selectivity Filter of a Potassium Channel 70 Una Aproximación Teórica para la Inhibición contra el Tipo Silvestre y Mutantes Virales de la Transcriptasa Reversa del VIH-1 por una serie de derivados de la Tiazolidenbencensulfonamida. 71 Ab initio Calculations on Interstellar Molecules 72 Participants 73 Index 79 Schedule 82 5th Workshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 81 15:00 – 15:45 15:45 – 15:55 Setting up Posters Plenary Lecture 1 O. Tapia Discussion 13:00 – 15:00 15:00 – 15:30 15:30 – 16:15 16:15 – 16:25 Dinner 20:00 – 22:00 17:30 – 19:30 17:05 – 17:25 16:45 – 17:05 16:25 – 16:45 15:55 – 16:15 11:40 – 12:00 11:20 – 11:40 5thWorkshop of Computational Chemistry and Molecular Spectroscopy October 17-20, 2006, Punta de Tralca, Chile 20:00 – 22:00 17:30 – 19:30 17:05 – 17:25 16:45 – 17:05 Oral 1 O. Vazquez Oral 2 G. Cardenas Poster Presentation 13:00 – 15:00 Lunch 11:30 – 12:30 16:25 – 16:45 10:40 – 11:00 Welcome and Opening Ceremony Rolando Kelly J. Academic Vice rector UNAB 11:00 – 11:20 10:20 – 10:40 Dinner Oral 8 R. Letelier Oral 9 M. Barrera Poster Presentation Oral 7 F. Mendizabal Discussion Plenary Lecture 3 P. Batail Lunch Oral 5 E. Rincon Oral 6 P. Jaramillo Oral 3 M. Fuentealba Oral 4 D. Guerra 9:45 – 9:55 10:00 – 10:20 Discussion 9:00 – 9:45 Registration República 252 Departure from Breakfast Plenary Lecture 2 J.-Y. Saillard 7:00 – 8:30 WEDNESDAY, 18 10:30 – 11:30 8:45 Bus to Punta de Tralca TUESDAY, 17 Breakfast Dinner Social 22:30 – Free Time Lunch Discussion Plenary Lecture 5 W. Blau Oral 10 W. Orellana Oral 11 V. Jiménez Discussion Plenary Lecture 4 N. Christensen 20:00 – 22:00 15:00 – 20:00 AFTERNOON 13:00 – 15:00 12:05 – 12:15 11:20 – 12:05 11:00 – 11:20 10:40 – 11:00 10:20 – 10:40 10:00 – 10:20 9:45 – 9:55 9:00 – 9:45 7:00 – 8:30 MORNING THURSDAY, 19 15:00 13:00 – 14:30 12:00 – 13:00 11:20 – 11:40 11:00 – 11:20 10:40 – 11:00 10:20 – 10:40 10:00 – 10:20 9:45 – 9:55 9:00 – 9:45 7:00 – 8:30 Bus RETURN TO SANTIAGO Lunch Poster withdrawal Round table Oral 12 C. Mascayano Oral 13 W. González Oral 14 C. Jullian Discussion Plenary Lecture 6 D. Gonzalez Breakfast FRIDAY, 20 82 S c he d ul e