Programa - Quantum 2012
Transcripción
Programa - Quantum 2012
Programa - Quantum 2012 Viernes 30/03 Sábado 31/03 Lunes 02/04 9:50 Inauguración 10.00 10.50 Flavio Coelho Agustín García Iglesias Cristian Vay 10.50 11.10 Coffee Break Coffee Break Coffee Break 11.10 12.00 Julia Plavnik Gastón García Irina Kashuba 12.00 12.10 Coffee Break Coffee Break Coffee Break 12.10 13.00 Barbara Pogorelsky / Pablo Román Slava Futorny Ivan Shestakov 13.00 15.30 Lunch Lunch Lunch 15.30 16.20 María Ronco Iván Angiono 16.20 16.40 Coffee Break Coffee Break 16.40 17.30 Steen Ryom-Hansen Nicolás Andruskiewitsch RESÚMENES Andruskiewitsch: From Hopf algebras to tensor categories: Towards fusion categories associated to finite dimensional Nichols algebras of diagonal type. Part II Angiono: From Hopf algebras to tensor categories: Towards fusion categories associated to finite dimensional Nichols algebras of diagonal type. Part I Coelho: Homological dimensions in representation theory of algebras Futorny: Gelfand-Tsetlin representations for quantum gl(n) García: Deformation by cocycles of pointed Hopf algebras over non-abelian groups Abstract: we will introduce a method to construct multiplicative 2-cocycles for bosonizations of Nichols algebras over Hopf algebras with bijective antipode. These cocycles arise as liftings of invariant e-biderivations defined on the Nichols algebras. Using this construction, we will show that all known finite dimensional pointed Hopf algebras over the dihedral groups Dm with m=4t > 11, over the symmetric group S3 and some families over S4 are cocycle deformations of bosonizations of Nichols algebras, by constructing explicitly the 2-cocycles. This talk will be about a joint work with M. Mastnak, St. Mary's University, Halifax, Canada. Preprint: arXiv:1203.0957v1. Garcia Iglesias: Liftings of Nichols algebras over some affine racks Kashuba: Induced modules for Affine Kac-Moody algebras Abstract. We will discuss induced modules with arbitrary multiplicities over affine Lie algebras. In particular, we consider generalized loop modules induced from some parabolic subalgebras. Our main result shows that the induction functor preserves irreducible modules when the central charge is non-zero. These results generalize similar reductions in particular cases previously considered by Futorny,Koenig and Mazorchuk, and also by Dimitrov, Futorny and Penkov. Plavnik: On fusion categories with few irreducible degrees Abstract: In this talk we shall consider the general problem of understanding the structure of a fusion category C after the knowledge of the set cd(C) of Frobenius- Perron dimensions of its simple objects. For a finite group G, the knowledge of the set cd(G) = cd(kG) gives in some cases substantial information about the structure of G. It is known, for instance, that if |cd(G)| is at most 3, then G is solvable. In particular, we consider the case where cd(C) = {1, p}, with p a prime number. We shall show various structural results regarding nilpotency and solvability, in the sense introduced by Etingof, Gelaki, Nikshych and Ostrik. The talk is based on joint work with S. Natale (preprint: arXiv:1103.2340v2). Pogorelsky: Right coideal subalgebras of quantum groups of type G2 Román: Matrix-valued orthogonal polynomials related to spherical functions Ronco: Tubings sobre grafos finitos simples y álgebras de Hopf Abstract: En [1], M. Carr and S. Devadoss introducen la noción de tubing sobre un grafo finito y simple G, y asocian a cada grafo un polítopo cuyas caras corresponden a los tubings del grafo. Cuando G es el grafo lineal Ln, con n vértices, el polítopo KLn es el polítopo de Stasheff o asociaedro, cuando se considera el grafo completo C_n se obtiene el permutoedro, y el polítopo asociado al grafo con n vértices y sin aristas es el n-1 simple estándar Δn-1. Por otra parte, es bien conocido que existen sobre los espacios vectoriales generados por el conjunto de caras del permutoedro y del asociaedro, sendas estructuras de álgebras de Hopf. Estas estructuras permiten interpretar esos espacios como objetos libres para teorías algebraicas más finas (álgebras dendriformes y sistemas pre-Lie en el caso del asociaedro, y álgebras shuffle en el caso del permutoedro), que permiten además reconstruir el borde de estos polítopos en términos de derivaciones para estas estructuras. Nuestro objetivo es: 1. Describir estructuras de álgebras de Hopf en el espacio generado por el conjuntos de tubings sobre todos los grafos simples finitos conexos, a partir de una operación de conexión de grafos. Estudiar la restricci’on de esta estructuras a ciertas subfamilias de grafos; que en los casos particulares de las familias de grafos completos y de grafos lineales recuperar las álgebras de Hopf ya conocidas. 2. Describir un orden parcial en el conjunto de tubings de un grafo simple, que generalice el orden de Tamari en el conjunto de vértices del asociaedro. Para algunas familias de grafos, este orden induce el producto asociativo en el espacio vectorial generado por el conjunto de tubings de todos los grafos de la familia, mencionado en el punto anterior. 3. Estudiar algunos ejemplos no conocidos de álgebras de Hopf en este contexto, relacionadas con el multipliedro y el stelloedro. Si es posible, trataremos de introducir la noción de álgebra shuffle como monad en la categoría de funtores sobre los espacios vectoriales graduados (ver [1]); y su posible extensión a otros tipos de graph asociaedra. Bibliografía [1] M. Carr , S. Devadoss: Coxeter complexes and graph associahedra, Topology and its Applications, 153 (1-2) 2155--2168, 2006. [2] S. Forcey, D. Springfield: Geometric combinatorial algebras: cyclohedron and simplex, J. Algebraic Comb., 32, 597--627, 2010. [3] J.-L. Loday, M. Ronco: Hopf algebra of the planar binary trees, Adv. Math.,139 (2), 293--309, 1998. [4] J.-L. Loday , M. Ronco: Order structure and the algebra of permutations and of planar binary trees, J. of Algebraic Combinatorics, 15 N* 3, 253--270, 2002. [5] J.-L. Loday , M. Ronco: Permutads, Preprint 2011, arXiv. [6] C. Malvenuto , C. Reutenauer: Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra, 177 (3), 967--982, 1995. Ryom-Hansen: Gradings on the blob algebra Abstract: This is an account of joint work with David Plaza. We show that the blob algebra is a graded cellular algebra, thus explaining the fact that the decomposition numbers are given by polynomials. Shestakov: The universal enveloping algebra of the traceless octonions is rigid Abstract: We prove that, over fields of characteristic zero, any bialgebra deformation of the universal enveloping algebra of the traceless octonions that satisfies the dual of the left and right Moufang identities must be coassociative and cocommutative. It is a joint work with Prof. J.M.Pérez Izquierdo, Universidad de La Rioja, Logroño, Spain. Vay: Representations of copointed Hopf algebras over S3