Nanofotónica y Metamateriales con Nanoestructuras Metálicas y
Transcripción
Nanofotónica y Metamateriales con Nanoestructuras Metálicas y
IEM Ins$tutode Estructuradela Materia NanofotónicayMetamaterialesenelIEM JoséA.SánchezGil IEM Ins$tutode Estructuradela Materia Dpto.EspectroscopíaNuclear,VibracionalydeMediosDesordenados EspectroscopíasdeSuperficieyFotónicadePlasmonesSuperficiales JoseA.SánchezGil &DiegoRomeroAbujetas LuisS.Froufe-Pérez RamónPaniagua IEM Ins$tutode Estructuradela Materia ¿Quéeslananofotónica? 1m=1.000.000.000nm Cabezadealfiler:~1mm=1.000.000nm Glóbulorojo:~7-8micras=7000-8000nm Virus:24–300nm Moléculadeagua:~0.275nm LUZ IEM Ins$tutode Estructuradela Materia ¿Quéeslananofotónica? ELECTROMAGNETISMO+MATERIACONDENSADA: PROPAGACIÓN,CONFINAMIENTOEINTERACCIÓNRADIACIÓN-MATERIA ENESCALASPORDEBAJODELALONG.DEONDA(λ) IEM Ins$tutode Estructuradela Materia Fenomenología de interés en Nanofotónica • PlasmonesSuperficialesLocalizados • Metamateriales • LuzMagné$caendieléctricosdealtoíndice • Nanohilossemiconductores:Fotoluminiscencia yabsorción IEM Ins$tutode Estructuradela Materia METALESENELVISIBLE TeoríadeDrudeparametales:elmodelodeelectroneslibres ¡SOLUCIONESCONFINADASENLAFRONTERAMETAL-DIELÉCTRICO! PLASMONESSUPERFICIALES IEM Ins$tutode Estructuradela Materia PLASMONESSUPERFICIALESLOCALIZADOS (LOCALIZEDSURFACEPLASMONRESONANCES) ELECTROSTÁTICA TEORÍADEG.MIE(1908) IEM Ins$tutode Estructuradela Materia ¿PORQUÉNOSINTERESANLOSPLASMONES? SURFACEPLASMONPOLARITONS • Sonmuysensiblesaloque$enenalrededor oseencuentranporelcamino: -deteccióndemoléculasaisladas -estudionodestruc$vosdemuestras • Propiedadesdeconfinamientodelaluz ydistanciasdepropagación(ondasquasi-2D), buenoscandidatosparatransmisiónde información. LOCALIZEDSURFACEPLASMONS • Producengrandesintensificacionesdel campo: -aplicaciónenespectroscopías(SERS) • Producengrandesmodificacionesdela densidadlocaldeestados: -modificacióndelosprocesosdeemisión deluz(inhibiciónointensificación) • Radiandeunamaneracontrolada: -nanoantenna IEM Ins$tutode Estructuradela Materia APLICACIONES SURFACEPLASMONPOLARITONS LOCALIZEDSURFACEPLASMONS IEM Ins$tutode Estructuradela Materia ENTONCES…¿QUÉHACEMOSNOSOTROS,EXACTAMENTE? • Estudiamoscómosecomportalaluzalinteractuarconunobjeto(nanométrico) • Estudiamosquédiseñoeselmasadecuadoparaunpropósitoconcreto. y…¿CÓMOLOHACEMOS? • ¡Esmuysencillo! escribimoslasecuacionesquedescribenlatsicadelsistemay, generalmente: IEM Ins$tutode Estructuradela Materia Porejemplo,elsca$eringdeluzpornano-objetos: Ecs.IntegralesdeSuperficie EDP’s GeometríaDiferencial EcuacionesIntegrales VariableCompleja FuncionesEspeciales max CÁLCULONUMÉRICO min Giannini,Rodriguez-Oliveros &Sánchez-Gil,Plasmonics(2010) Gianninietal,JOSAA(2007) IEM Ins$tutode Estructuradela Materia Rodriguez-Oliveros&Sánchez-Gil,Opt.Express(2011) IEM Ins$tutode Estructuradela Materia Rodríguez-Oliveros&Sánchez-Gil,Opt.Express(2012) IEM Ins$tutode Estructuradela Materia DELOTEÓRICO… López-Tejeiraetal.NewJ.Phys.(2012) …ALOAPLICADO López-Tejeira,Paniagua-Domínguez &Sánchez-Gil,ACSNano(2012) IEM Ins$tutode Estructuradela Materia ¿Quésonlosmetamateriales? L L << λ IEM Ins$tutode Estructuradela Materia “Jugandoconlaspiezas”podemosobtener… …cualquiervalordeRe(εeff)ydeRe(µeff)!!! Re(µ) Metamateriales“zurdos” Re(ε)<0 Re(µ)>0 Re(ε)>0 Re(µ)>0 METAL DIELÉCTRICO Re(ε) ¿? Re(ε)<0 Re(µ)<0 PLASMA MAGNÉTICO Re(ε)>0 Re(µ)<0 IEM Ins$tutode Estructuradela Materia Refracciónnega$va Re(ε)>0 Re(µ)>0 Re(ε)<0 Re(µ)<0 IEM Ins$tutode Estructuradela Materia SRR M-W Re(µ)<0 Re(ε)<0 •Problemasdediseño:escaladohaciaelvisible,anchodebanda,disipación, isotropía,… •Problemasfundamentales:¿cómocalcularlaspropiedadesefec$vasdeunsistema dado?¿cómogaran$zarquetengansen$dotsico?¿misistemaesrealmente homogéneo?¿quéocurreenlasintercaras?¿cómotratamosladispersiónespacial,el acoplamientomagnetoeléctricoolosgapsfotónicos?¿cómoop$mizarundiseñode caraalaaplicación? IEM Ins$tutode Estructuradela Materia Metamateriales“zurdos”eisótroposenelóp$co, basadosennanoestructurascore-shell Núcleo metálico: Plasmon localizado Recubrimiento dieléctrico: Resonancia (Luz) Magnética R.Paniagua-Domínguezetal.,New.J.Phys.(2011) R.Paniagua-Domínguezetal.,Scien>ficReports(2013) IEM Ins$tutode Estructuradela Materia Ag Si Rout a k E Rin H H E k ΓK ΓM ν = 235 THz Dipole px 0 λ = 1.28 µm |P|(TW/m2) 50 Dipole py Negative Refraction R.Paniagua-Domínguezetal.,New.J.Phys.(2011) ,Sci.Reports(2013) Flat lensing Abujetasetal.,J.Opt.(2015) IEM Ins$tutode Estructuradela Materia Nanohilos Semiconductores Resonancias Mie Modos guíados Luz confinada en la nanoescala Emisión (PL) Absorción IEM Ins$tutode Estructuradela Materia Semiconductor NW Photoluminescence/Absorption • Enhanced/Direc$onalPL InPNWs:Fouriermicroscopy (Grzelaetal,NanoLe~.2012) vanDametal,NanoLe~.2015) • Enhanced/Direc$onalPL: Analy$calmodel (Paniaguaetal,Nanoscale2013) • Enhanced/Direc$onalAbsorp$on: MieresonancesvsLeakymodes (Grzegorzetal,NanoLe~.2014,ACSPhoton.2015) IEM Ins$tutode Estructuradela Materia Nanofotónica Semiconductor NW (PL) Antenna Emission Metal Nanorod Fano LSP Hybrid (core-shell) Metamaterials NIMs IEM Ins$tutode Estructuradela Materia Letter pubs.acs.org/NanoLett Directional and Polarized Emission from Nanowire Arrays Dick van Dam,*,† Diego R. Abujetas,‡ Ramón Paniagua-Domínguez,‡ José A. Sánchez-Gil,‡ Erik P. A. M. Bakkers,†,§ Jos E. M. Haverkort,† and Jaime Gómez Rivas*,†,∥ † Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands Instituto de Estructura de la Materia (IEM-CSIC), Consejo Superior de Investigaciones Científicas, Serrano 121, 28006, Madrid, Spain § Kavli Institute of Nanoscience, Quantum Transport, Delft University of Technology, 2600 GA Delft, The Netherlands ∥ FOM Institute AMOLF, c/o Philips Research, High-Tech Campus 4, 5656 AE Eindhoven, The Netherlands ‡ S Supporting Information * ABSTRACT: Lighting applications require directional and polarization control of the emitted light, which is currently achieved by bulky optical components such as lenses, parabolic mirrors, and polarizers. Ideally, this control would be achieved without any external optics, but at the nanoscale, during the generation of light. Semiconductor nanowires are promising candidates for lighting devices due to their efficient light outcoupling and synthesis flexibility. In this work, we demonstrate a precise control of both the directionality and the polarization of the nanowire array emission by changing the nanowire diameter. We change the angular emission pattern from a large-angle doughnut shape to a narrow-angle beaming along the nanowire axis. In addition, we amc00 tune| ACSJCA the | JCA10.0.1465/W Unicode | research.3f (R3.6.i5 HF01:4227 | 2.0 alpha 39) 2014/03/19 08:04:00 | PROD-JCAVA | rq_3379248 | polarization from unpolarized to either p- or s-polarized. Both the far-field emission pattern and its polarization are controlled by the number and type of guided or leaky modes supported by the nanowire, which are determined by the nanowire diameter. KEYWORDS: Nanowires, Fourier microscopy, polarization, emission, directionality 4/07/2014 14:24:27 | 8 | JCA-DEFAULT Letter pubs.acs.org/NanoLett C outcoupling has been theoretically18 and experimentally ontrolling the polarization and directionality of the 1 Mode Parity-Controlled Fano- and Lorentz-like Line Shapes Arising in emission of nanosized light sources is of great importance demonstrated.14,19 So far, no studyeither theoretically or 1−4 in the engineering of light-emitting diodes (LEDs), experimentallyof the interplay of both described mechanisms 2 Plasmonic Nanorods Ultra low-loss, isotropic optical nanolasers,5,6 and applications in quantum optics such as single ,†,‡ has been reported. 3 Niels Verellen,* Fernando López-Tejeira,§ Ramón Paniagua-Domínguez,∥ Dries Vercruysse,‡,† † ‡,† photon sources.7−10 The bottom-up growth of semiconductor In addition to directionality, control over the emission 4 Denitza Denkova, Liesbet Lagae, Pol Van Dorpe,‡,† Victor V. Moshchalkov,† and José A. Sánchez-Gil∥ metamaterial based on nanowires (NWs) allows a negative-index large design flexibility in parameters polarization is important for many applications, such as solid† SUBJECT AREAS: 5 INPAC and Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium such as nanowire position, size, interwire distance, and state lighting, sensing, and optical communication. Thin ‡ hybrid metal-semiconductor nanowires METAMATERIALS 6 IMEC, Kapeldreef 75, B-3001 Leuven, Belgium crystallographicNANOWIRES orientation. This makes nanowires interesting § nanowires have the ability to emit strongly polarized 7 Departamento de Física de la Materia Condensada, Escuela de Ingeniería y Arquitectura, Universidad de Zaragoza, María de Luna 3, R. Abujetas & J. A. Sánchez-Gil 2 SUB-WAVELENGTH candidates for theOPTICS designR. Paniagua-Domı́nguez, of nanosized D. light emitters and 8 E-50018 Zaragoza, Spain light,20,21 which is a useful property for displays and sensing 11 NANOPHOTONICS AND ∥ 22 detectors. Instituto de Estructura de la Materia (IEM-CSIC), Consejo Superior de Investigaciones Científicas, Serrano 121, E-28006 Madrid, PLASMONICS Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientı́ficas, 121, 28006 Madrid,the Spain. application butSerrano may hinder in quantum optics. 9 The 10 Spain Wide-range control over the direction of the nanowire nanowire polarization anisotropy has been first explained in the Recently, many fascinating properties predicted for metamaterials (negative refraction, superlensing, S Supporting Information emission has notReceived yet been reported. Previous studies have 11 * electrostatic limit by the elongated shape of the nanowires and electromagnetic cloaking,…) were experimentally demonstrated. Unfortunately, the best achievements 2013 indicated the1 February two main mechanisms that affect thedomain, nanowire have no direct translation to the optical without being burdened by technological and conceptual the highmetamaterials refractive(NIM), index contrast with the environment,20 and it Accepted 12−14 difficulties. Of particular importance within the realm of optical negative-index is the 12 ABSTRACT: We present the experimental observation of spectral Recently, the achieving directional emission emission directionality. 6 March 2013 issue of simultaneously strong electric and magnetic responses and low associated losses. Here, has later been described in terms of coupling to Mie 13 lines of distinctly different shapes in the optical extinction cross-section hybrid metal-semiconductor nanowires are proposed as building blocks of optical NIMs. The metamaterial of thin InP nanowires explained by coupling to leaky Publishedhas been 22 index of refraction of metallic nanorod antennas under near-normal plane wave thus obtained, highly isotropic in the plane normal to the nanowires, presents a negative resonances. On top of that, the selection rules of the 14 band 15 21 March 2013 in the near-infrared, with values of the modify real part well below 21, and extremely low losses (an order of 15 illumination. Surface plasmon resonances of odd mode parity present These modes the waveguide modes in the nanowire. 21 magnitude better than present optical NIMs). Tunability of the system allows to select the operating range in structure of the emitting material also affect the polarization. 16 Fano interference in the scattering cross-section, resulting in whole telecom causing spectrum. The is proven in configurations such as prisms and slabs, directly direction of the nanowiretheemission, andesign antenna-like 17 asymmetric spectral lines. Contrarily, modes with even parity appear observing negative refraction. However, it is unknown how the polarization of the nanowire Correspondence and behavior.7,15,16 Identification of the relevant guided/leaky 18 as symmetric Lorentzian lines. Finite element simulations are used to requests for materials emission depends on the diameter, taking into account 19both verify the experimental results. The emergence of either constructive or nanowire should modes is important tuning the are direction of the be addressed to he in so called metamaterials artificial materials in which the effective medium properties, usually exotic 20 destructive mode interference is explained with a semianalytical 1D line 17 and not naturally attainable, depend on the geometry of theirwaveguide basic constituents, rather than on their modes and selection rules. J.A.S.-G. (j.sanchez@ far field emission. The second mechanism was associated 21 current model. This simple model directly explains the mode-parity . Ranging from sub-diffraction resolution or spontaneous emission to extreme chemical composition that csic.es) Inhavethis Letter we discuss the polarized and directional many exciting and unexpected phenomena been achieved or predicted for control over the flowarrays of light ,is 22 dependence of the Fano-like interference. Plasmonic nanorods are with the emission directionality of NW the coupling of this new kind of materials. Although originally developed in electromagnetics, many of the ideas developed in this 23 widely used as half-wave optical dipole antennas. Our findings offer a emission properties of semiconductor nanowire arrays, which field in have periodic been successively extended of or adapted to other ondulatory phenomena, such as acoustics, making it one the emission to resonances arrays nanowires, 24 perspective and theoretical framework for operating these antennas at of the most active in the engineering and physical sciences in the past few years. which behave as quasi-two-dimensional photonic crystals. The 25 higher-order modes. Still, however, there are many open challenges in the field. Among them, the realization of a bulk isotropic index (NIM), withmay negative refraction and low losses in the optical domain . In general photoluminescence excited negative in one ofmetamaterial the nanowires couple Received: March 23, 2015 26 KEYWORDS: Nanoantenna, surface plasmon resonance, Fano resonance, interference, plasmonics terms, the major issue when trying to achieve such a goal is obtaining a strong diamagnetic response of the constituents, enough to lead to an effective negative permeability. Probably as a consequence of the success of the to Bloch modes supported by the periodic structure and couple Revised: May 21, 2015 original designs operating in the microwave regime, many efforts were made to adapt them to increasingly higher 2015 out to free space in certain This . directional Apart from some inheritedPublished: from the original June designs,4, such as anisofrequencies,directions. mainly by miniaturization the shape, size, and dielectric environment by using a variety of etallic nanorods are exploited as biological imaging 27 T 1,2 3,4 5 6,7 8,9 8,9 tropy, many drawbacks were found in doing so, mainly related to the different behaviour of metals at optical frequencies, such as saturation of the magnetic response10 or high losses associated to ohmic currents. As a consequence, completely different Society strategies were studied to4557 obtain artificial magnetism11,12, as those based in © 2015 American Chemical displacement currents appearing in nanoparticle clusters due to coupling between structures13. However, some of the most successful were those which attempted to obtain it from natural magnetic resonant modes in high permittivity dielectrics, leading to low-loss magnetic materials14–18. Secondary structures or particular arrangements were needed to provide the additional electrical response, necessary to obtain doubly negative index of refraction19–21. Thus far, the maximum theoretical figure of merit (f.o.m 5 2Re(neff)/Im(neff)) reported is of the order of f.o.m., 2522–24 for metamaterials based on canonical fishnet designs; their dimensions, however, are in the very limit of validity of the effective medium description, and isotropy was not proven (see25 for a review on this topic). In this work, we propose a structure that, combining electric and magnetic responses, can be used as the basic building block for extremely low-loss (f.o.m., 200) isotropic two-dimensional metamaterials in the near-infrared, with simultaneously negative permittivity ( ) and permeability (m) at optical frequencies. Such structure is a core-shell nanowire (NW) of circular cross section. Noble metals such as silver or gold can be employed to build the core, and high permittivity semiconductors, such as silicon or germanium, to build the shell. Artificial magnetism of the effective medium is achieved by exciting the lowest order Mie-like magnetic resonance in 28 M probes and widely used as generic plasmonic dipole methods.12,13,25−27 Despite this large interest in nanorods, only very few reportsall theoreticaladdress the scattering behavior with a focus on the spectral line shape.28−30 Plasmon resonance, as a wave phenomenon, is expected to present interference characteristics. The wave nature of propagating surface plasmon polaritons (SPPs) was elegantly demonstrated with a Young’s double slit experiment.31 For localized surface plasmon resonances, the interference of spectrally overlapping and coupled modes is well-recognized to affect the scattering behavior of the nanostructure under investigation.32,33 In particular, the interference of a broad background continuum state with spectrally sharp higher-order resonances, as schematically illustrated in Figure 1a, can lead to a spectral response with asymmetric Fano-like line shapes in a variety of nanoparticle configurations such as nanosphere clusters,34 asymmetric dolmen-like nanorod arrangements,35,36 Paramásinformación:JoséA.SánchezGil. [email protected],2ªPlanta.Extensión942219 29 antennas operating at optical and near-infrared frequencies, DOI: 10.1021/acs.nanolett.5b01135 Nano Lett. 2015, 15, 4557−4563 30 forming an analogue to classical half-wave dipole antennas. 31 32 33 34 35 36 37 38 39 40 41 SCIENTIFIC REPORTS | 3 : 1507 | DOI: 10.1038/srep01507 1 42 Nanorod antennas are an excellent tool for the manipulation of a variety of nanoscale light−matter interactions.1,2 They form the building blocks for Yagi-Uda antennas which allow directional control of light,3−6 or they can act as active optical antennas for photodetection by generating hot electrons.7 Recently, it was demonstrated how plasmonic nanorods can be used to efficiently convert the radiation of quantum emitters into novel multipolar sources of photons owing to the higherorder localized surface plasmon resonances (LSPRs) supported by these antennas.8,9 The fundamental dipole and higher-order antenna modes have been extensively studied experimentally using optical 10−15 50 51 52 53 54 55 56 57 58 59 60 61 62 63 f1 64 65 66