Characterization tests
Transcripción
Characterization tests
Geological Storage of CO2: The Hontomin Technology Development Plant Jesús Carrera IDAEA, CSIC Oct, 2013 Objective and content Objective: Introduce Hontomin and the steps involved in developing a CO2 storage site Content: Geology Geophysics Characterization tests Injcection tests Technological Developing Plant Hontomín Hontomín Vigo N Burgos Planta de Desarrollo Tecnológico (PDT) Hontomín 0 250 500 m TDP Characterization 2009-2012 as always, start with geology ,… and baseline Geological and structural mapping Petrophysical studies 3D seismics Electromagnetic survey 3D High resolution gravimetry 3D geological model Hydrogeology and hydrochemistry Natural gas emissions Seismicity Geothermal studies Surface deformations DInSAR Floral Biodiversity Bio-indicators .... Structural studies Baseline studies Large scale geology: surface AYOLUENGO Oil field HONTOMIN TDP Burgos 50 km Local scale surface geology: Upper Cretaceous Limestones, dolomitic limestones and marls dolomitized Strongly Sandy and marly limestones Cenozoic Alluvial deposits Carcedo Facies Bureba Facies Bureba,marginal Facies Quinta et al., 2010. UB-Geomodels Pre-existing boreholes (H1, H2, H3, H4) Boreholes drilled for CO2 (H-I, H-A) Stratigraphy Expected 0m Purbeck clays 1 cm Purbeck sandstones 865 – 967 m 1 cm 500 m 1 cm 1000 m Seal 2 Reservoir 2 Lias - Dogger marls and black bituminous shales Seal 1 Reservoir 1 1500 m Jurassic Limestones 1415 – 1487 m 1 cm 3D Seismics 3D seismics 1400 m aprox. 950 ms TWT time slice 5x5 km Geomodels + IJA, CSIC X Line 270 Top of the reservoir Geomodels, 2011 3D Magnetotelurics Geomodels, MT, 2011 Geomodels, U. Barcelona Gravimetry and High resolution gravimetry IGME, 2010 IGME DInSAR - existing reflectors – Hontomin Differential Interferometric SAR Ground-based SAR (GBSAR) + DInSAR IG Barcelona … next step, hydrodynamic characterization, … but which parameters are important? • These parameters can not be determined from cores because: – Different scale – You never recover the core of the zone through which water flows Flow of CO2 in Aquifer Low K, high entry pressure caprock Deep (more than 1 km) aquifer CO2 low viscosity, flows easily At first, high pressure because it needs to displace brine Low density, CO2 floats CO2 rich brine fingering (CO2 rich brine is denser and sinks in native brine) CO2 rich brine In summary • • • • Low density and viscosity High solubility Geochemistry Potential mechanical coupling • Capillary effects • Thermal effects • • • • • • Buoyancy Viscous fingering Gravity fingering Chemical fingering Seal Rock failure risk Migration of CO2 and/or brine • and, CCS expensive The Hontomin challenge: ¿Can we understand all this qualitatively? ¿Can we take advantage of these “problems” to reduce costs? Key issues Reduce costs Reduce Energy: Permeabilty how much?, how to increase it? Increase storage capacity How much, how to increase it? Reduce requirements Purity of CO2? Increase safety Improve social acceptance Tool: Increase understanding Key parameters Permeability: Controls Effective: Buildup of injection pressure Vertical: Rate of fingering (dissolution) Connection: Migration of brine Seal: vertical migration trough seal (But also entry pressure) Key parameters Porosity: Controls Storage capacity Porosity increase may increase permeability But affect mechanical properties Key parameters Reactivity: Controls Porosity and permeability variations State of CO2 Key issues Mechanical properties: Control Compressibility: storage capacity Long term safety Social perception GW-1 Monitoring of shallow water aquifers. GW-2 GW-3 AITEMIN, CIEMAT GW1 (450m), GW2 (450m) GW3 (150m) instrumented boreholes Modeling Prediction vs Monitoring Data Original Hontomin design 3 wells H5: Injection well H6: Geophysics well H7: Sampling well H5 H7 H6 H5: Injection well Electrodes Pressure (and T) transducers Extensometers Temperature (DTS) and heater Pressure and T at injection tube H6: Geophysics well Electrodes Geophones (3 comp) + hydrophone Heater + Optical fiber to measure T (DTS) and deformation Pressure sensors H7: Multilevel Sampling well Electrodes Pressure (and T) transducers Extensometers Temperature (DTS) and heater Packers Acces to several intervals for sampling, testing, high accuracy P monitoring Characterization tests (objetive: identify hydromechanical properties) • Single interval tests – Pulse injection tests – Gas pressure threshold test • Water pumping-injection (“quita y pon”) tests – Cross-hole to determine seal integrity – Coupled to tracer tests at injection well • Tracer tests – Reactive tracers to determine reactivity – Thermal (“calentón”) • CO2 Push-pull (“mete-saca”) tests • High pressure injection test: big push (“apretón”) Single interval tests at H7 sampling well open intervals Cross Section 28 Pulse: Inject a known volume of Gas pressure threshold tests: Inject gas to identify entry pressure. 26 5m 24 Lamp G1 I1 K1 Fr-5 Fr-2 Fr-1 22 B22 J5 20 B13 18 Drawdown (m) water and oberve pressure recovery Identify fracture T Observe response at adjacent intervals to identify vertical connectivity F21 F11 5m K2 B23 F13 16 F23 14 12 K2·3 (Fr-2) 10 8 B23·2 (Matrix) 6 4 2 J5·3 (Fr-1) 0 1 10 100 1000 Tests Time (s) 10000 100000 Water Injection-extraction 1. Pumping (Quita) 1. Pumping tests = 0.1-10L/s 2. Pumped water needs to be stored (conditioning and storage of up to 10000 m3) 3. Monitor drawdowns at all intervals to obtain Klocal, Keff, Kvert, and S. Also monitor deformation (but expect little). 10-4 10-2 10-8 10-810-8 2 K*0.75 K*0.9 10-610-6 pe Slo er f i u Aq Base: K 102 104 1 102 104 106 10-2 100 tD 10-8 2.5 t (d) 10-6 10-4 dsD / d(log10tD) 10 6 10 0.5 Well Effect 104 0 10-2 106 100 10 0 10-8 3 10 10-6 Natural Aquifer tD tD Ba se M od el: 0 sD 0 10-2 100 dsD / d(log10tD) % ell ) 102102 CO 2 (W 100100 Well Effect 100% CO2 102 tD 10-2 100 t (d) -2 10 4 106 F t (d) -4 0 0 10-210-2 104 tD CO2 Zone 2 102 tD 104 10-4 tc 0% CO2 -6 102 5% 100% 50% 25% 104104 2 0% CO2 1 Well Effect 106 106106 10% 5% tc 100% CO2 100 0% CO2 1 10 0% Well Effect -8 1.5 tc 100% CO2 CO 2 Ba se M 2 25% 10% tc 0% CO2 od el: 0% 1 100% 50% 2 CO 2 4 sD Changes of Sa (CO2 zone) 106 Changes of Sw (Wellbore Storage) Ja co b tD 104 100 Aquifer Slope Well Effect 100 0 10-2 100 102 tD 104 6 10 tc=3.5·10-4Base:d K 0 10-2 106 CO2 Zone Early time: Local 2 scale, injectivity, 0.5 flow dimension, etc E 102 10-2 Ja co b sD 10tD) dsD / d(log 10-4 100100 K*0.75 Natural Aquifer 0 10-2 100 t (d) 0 -2 10 10-210-2 tD 10-6 K*0.1 K*0.9 Well Effect 100 100 K*0.5 2 Drawdown Derivativevsplot time 6 (semi-log) ds/d(lnt) D Late time:1.5 large scale C transmissivity, boundary 4 effects, leakage Jacob 10-8 6 10-2 K*0.5 10-410-4 6 10 4 3 t (d) t (d) 2 0 -2 10 0 10-2 10-4 CO2 Zone Slope K*0.5 Slo pe K*0.5 2 t (d) 10-6 16 K*0.1 8 6 100 dsD / d(log10tD) 100 10-6 CO 10-2 10-8 10 30 t (d) sD 10-4 Changes of Ka (CO2 zone) t (d) 10-6 B A Zon e Pumping test 106 Water Injection-extraction 2. Injection (“y pon”) 1. 2. 3. 4. Add tracer (and biocide) Inject traced water Rest Extract water and monitor tracer(s) breakthrough. To obtain porosity structure, reactivity. 5. Repeat varying nature of tracers (conservative and reactive) and T 6. Repeat varying injection volume and rest time. Basics of Quita-y-Pon Gouze et al. WRR, 2008 Esquema de un modelo de transferencia de masa de porosidad múltiple para representar el transporte de solutos y el flujo multifase. La porosidad advectiva (móvil) se encuentra en medio de una mezcla de bloques de matriz de varios tamaños, cada uno de los cuales contiene un rango de distintos tipos de porosidad difusiva (Haggerty y McKenna., 1999). CO2 push-pull (Mete-saca) test 1. Inject CO2 (and gaseous tracers). Some 100 t de CO2 2. Electrical and thermal (heating) tests 3. Extract gas and evaluate mass of CO2 y concentration of gaseous tracers 4. Electrical and thermal tests 5. Informs about trapping mechanisms (specifically contact area and capillary trapped CO2) High pressure (and flow rate) injection test (“apretón”) • Inject a high flow rate at a very high pressure (some 100 bar at surface) • Observe pore fluid pressure, rock deformation and possible microseisms Hydro-mechanical coupling during “apretón” As fluid pressure increases, the seal bends P goes up immediately At first, P drops Heating test (“calentón”) • • • • Heat up the heater along the whole borehole Observe temperature buildup Deduce termal capacity and conductivity Deduce presence of CO2 (either continuous phase durind injection tests, or capillary trapped during CO2 “mete saca”) CO2 injection tests – Conventional – Fluctuating flow rate – Liquid CO2 injection – Others Fuctuating injection Inject during short periods followed by resting periods to promote mixing Basic objective is to accelerate CO2 disolution and transport in suspension, which should improve efficiency Anticipate two test: 1) 12 h injection (2 kg/s) and 12 h rest during at least 1 month. 2) 6 h injection (4 kg/s) and 18 h rest during at least 1 month. Low T CO2 injection Objetive: inject in liquid phase - Reduce injection pressure and volume (reduce energy cost because the weight of CO2 column helps) - Easier to inject Proposed conventional Inject dissolved CO2 to minimize total fluid volume and overpressure P Sobrepresión causada por inyección Sobrepresión con extracción de agua salada Presión inicial Extracción de agua salada distancia CO2 Formació n Agua sala d sello a con CO 2 Flujo de C O2 disuelt o hacia la mas profu s partes ndas del a cuífero Figura 2: Representación esquemática de la inyección de CO2 disuelto. Obsérvese (arriba) que la sobrepresión sólo afecta a una pequeña parte del acuífero, lo que elimina los riesgos sobre la formación sello y de fugas de CO2 o salmuera. As it turned out… • Geological prognosis turned out to be untrue • Permeability appears to be much lower than expected • Money run out (much simpler instrumentation) • We will see