Characterization tests

Transcripción

Characterization tests
Geological Storage of CO2: The
Hontomin Technology
Development Plant
Jesús Carrera
IDAEA, CSIC
Oct, 2013
Objective and content
Objective: Introduce Hontomin and the steps
involved in developing a CO2 storage site
Content:
Geology
Geophysics
Characterization tests
Injcection tests
Technological Developing Plant Hontomín
Hontomín
Vigo
N
Burgos
Planta de
Desarrollo
Tecnológico (PDT)
Hontomín
0
250
500 m
TDP Characterization 2009-2012
as always, start with geology ,… and baseline
Geological and structural mapping
Petrophysical studies
3D seismics
Electromagnetic survey 3D
High resolution gravimetry
3D geological model
Hydrogeology and hydrochemistry
Natural gas emissions
Seismicity
Geothermal studies
Surface deformations DInSAR
Floral Biodiversity
Bio-indicators
....
Structural studies
Baseline studies
Large scale geology: surface
AYOLUENGO
Oil field
HONTOMIN
TDP
Burgos
50 km
Local scale surface geology:
Upper Cretaceous
Limestones,
dolomitic
limestones and
marls dolomitized
Strongly
Sandy and marly
limestones
Cenozoic
Alluvial deposits
Carcedo Facies
Bureba Facies
Bureba,marginal
Facies
Quinta et al., 2010. UB-Geomodels
Pre-existing boreholes
(H1, H2, H3, H4)
Boreholes drilled for CO2
(H-I, H-A)
Stratigraphy Expected
0m
Purbeck clays
1 cm
Purbeck sandstones
865 – 967 m
1 cm
500 m
1 cm
1000 m
Seal 2
Reservoir 2
Lias - Dogger marls
and black bituminous
shales
Seal 1
Reservoir 1
1500 m
Jurassic Limestones
1415 – 1487 m
1 cm
3D Seismics
3D seismics
1400 m
aprox.
950 ms TWT time slice
5x5 km
Geomodels + IJA, CSIC
X Line 270
Top of the reservoir
Geomodels, 2011
3D Magnetotelurics
Geomodels, MT, 2011
Geomodels, U. Barcelona
Gravimetry and
High resolution
gravimetry
IGME, 2010
IGME
DInSAR - existing reflectors – Hontomin
Differential Interferometric SAR
Ground-based SAR (GBSAR) + DInSAR
IG Barcelona
… next step, hydrodynamic characterization,
… but which parameters are important?
• These parameters can not be determined
from cores because:
– Different scale
– You never recover the core of the zone through
which water flows
Flow of CO2 in Aquifer
Low K, high entry pressure caprock
Deep (more than 1 km) aquifer
CO2 low viscosity,
flows easily
At first, high pressure
because it needs to
displace brine
Low density,
CO2 floats
CO2 rich brine fingering
(CO2 rich brine is denser and sinks in native brine)
CO2 rich brine
In summary
•
•
•
•
Low density and viscosity
High solubility
Geochemistry
Potential mechanical
coupling
• Capillary effects
• Thermal effects
•
•
•
•
•
•
Buoyancy
Viscous fingering
Gravity fingering
Chemical fingering
Seal Rock failure risk
Migration of CO2 and/or
brine
• and, CCS expensive
The Hontomin challenge:
¿Can we understand all this qualitatively?
¿Can we take advantage of these “problems” to reduce costs?
Key issues
Reduce costs
Reduce Energy:
Permeabilty how much?, how to increase it?
Increase storage capacity
How much, how to increase it?
Reduce requirements
Purity of CO2?
Increase safety
Improve social acceptance
Tool: Increase understanding
Key parameters
Permeability: Controls
Effective: Buildup of injection pressure
Vertical: Rate of fingering (dissolution)
Connection: Migration of brine
Seal: vertical migration trough seal (But
also entry pressure)
Key parameters
Porosity: Controls
Storage capacity
Porosity increase may increase permeability
But affect mechanical properties
Key parameters
Reactivity: Controls
Porosity and permeability variations
State of CO2
Key issues
Mechanical properties: Control
Compressibility: storage capacity
Long term safety
Social perception
GW-1
Monitoring of shallow
water aquifers.
GW-2
GW-3
AITEMIN, CIEMAT
GW1 (450m), GW2 (450m)
GW3 (150m)
instrumented boreholes
Modeling Prediction
vs
Monitoring Data
Original Hontomin design 3 wells
H5: Injection well
H6: Geophysics well
H7: Sampling well
H5 H7
H6
H5: Injection well
Electrodes
Pressure (and T) transducers
Extensometers
Temperature (DTS) and heater
Pressure and T at
injection tube
H6: Geophysics well
Electrodes
Geophones (3 comp) + hydrophone
Heater + Optical fiber to measure T
(DTS) and deformation
Pressure sensors
H7: Multilevel Sampling well
Electrodes
Pressure (and T) transducers
Extensometers
Temperature (DTS) and heater
Packers
Acces to several intervals for
sampling, testing, high accuracy
P monitoring
Characterization tests
(objetive: identify hydromechanical properties)
• Single interval tests
– Pulse injection tests
– Gas pressure threshold test
• Water pumping-injection (“quita y pon”) tests
– Cross-hole to determine seal integrity
– Coupled to tracer tests at injection well
• Tracer tests
– Reactive tracers to determine reactivity
– Thermal (“calentón”)
• CO2 Push-pull (“mete-saca”) tests
• High pressure injection test: big push (“apretón”)
Single interval tests at H7 sampling well
open intervals
Cross Section
28
Pulse: Inject a known volume of
Gas pressure threshold tests:
Inject gas to identify entry
pressure.
26
5m
24
Lamp
G1
I1
K1
Fr-5
Fr-2
Fr-1
22
B22
J5
20
B13
18
Drawdown (m)
water and oberve pressure
recovery
Identify fracture T
Observe response at adjacent
intervals to identify vertical
connectivity
F21
F11
5m
K2
B23
F13
16
F23
14
12
K2·3 (Fr-2)
10
8
B23·2 (Matrix)
6
4
2
J5·3 (Fr-1)
0
1
10
100
1000
Tests Time (s)
10000
100000
Water Injection-extraction
1. Pumping (Quita)
1. Pumping tests = 0.1-10L/s
2. Pumped water needs to be
stored (conditioning and
storage of up to 10000 m3)
3. Monitor drawdowns at all
intervals to obtain Klocal,
Keff, Kvert, and S. Also
monitor deformation (but
expect little).
10-4
10-2
10-8
10-810-8
2
K*0.75
K*0.9
10-610-6
pe
Slo
er
f
i
u
Aq
Base: K
102
104
1
102
104
106
10-2
100
tD
10-8
2.5
t (d)
10-6
10-4
dsD / d(log10tD)
10
6
10
0.5 Well Effect
104
0
10-2
106
100
10
0
10-8
3
10
10-6
Natural Aquifer
tD tD
Ba
se
M
od
el:
0
sD
0
10-2
100
dsD / d(log10tD)
%
ell
)
102102
CO
2 (W
100100
Well Effect
100% CO2
102
tD
10-2
100
t (d)
-2
10
4
106
F
t (d)
-4
0 0
10-210-2
104
tD
CO2 Zone
2
102
tD
104
10-4
tc 0% CO2
-6
102
5%
100%
50%
25%
104104
2
0% CO2
1
Well Effect
106
106106
10%
5%
tc 100% CO2
100
0% CO2
1
10
0%
Well Effect
-8
1.5
tc 100% CO2
CO
2
Ba
se
M
2
25%
10%
tc 0% CO2
od
el:
0%
1
100%
50%
2
CO
2
4
sD
Changes of Sa (CO2 zone)
106
Changes of Sw (Wellbore Storage)
Ja
co
b
tD
104
100
Aquifer
Slope
Well Effect
100
0
10-2
100
102
tD
104
6
10
tc=3.5·10-4Base:d K
0
10-2
106
CO2 Zone
Early time: Local
2
scale, injectivity,
0.5
flow dimension,
etc
E
102
10-2
Ja
co
b
sD 10tD)
dsD / d(log
10-4
100100
K*0.75
Natural Aquifer
0
10-2
100
t (d)
0
-2
10
10-210-2
tD
10-6
K*0.1
K*0.9
Well Effect
100
100
K*0.5
2
Drawdown
Derivativevsplot
time
6 (semi-log)
ds/d(lnt)
D
Late time:1.5
large scale
C
transmissivity, boundary
4
effects, leakage
Jacob
10-8
6
10-2
K*0.5
10-410-4
6
10
4
3
t (d)
t (d)
2
0
-2
10
0
10-2
10-4
CO2 Zone Slope
K*0.5
Slo
pe
K*0.5
2
t (d)
10-6
16
K*0.1
8
6
100
dsD / d(log10tD)
100
10-6
CO
10-2
10-8
10 30
t (d)
sD
10-4
Changes of Ka (CO2 zone)
t (d)
10-6
B
A
Zon
e
Pumping test
106
Water Injection-extraction
2. Injection (“y pon”)
1.
2.
3.
4.
Add tracer (and biocide)
Inject traced water
Rest
Extract water and monitor
tracer(s) breakthrough. To obtain
porosity structure, reactivity.
5. Repeat varying nature of tracers
(conservative and reactive) and T
6. Repeat varying injection volume
and rest time.
Basics of Quita-y-Pon
Gouze et al. WRR, 2008
Esquema de un modelo de transferencia de masa de porosidad múltiple
para representar el transporte de solutos y el flujo multifase. La
porosidad advectiva (móvil) se encuentra en medio de una mezcla de
bloques de matriz de varios tamaños, cada uno de los cuales contiene
un rango de distintos tipos de porosidad difusiva (Haggerty y McKenna.,
1999).
CO2 push-pull (Mete-saca) test
1. Inject CO2 (and gaseous tracers). Some 100 t
de CO2
2. Electrical and thermal (heating) tests
3. Extract gas and evaluate mass of CO2 y
concentration of gaseous tracers
4. Electrical and thermal tests
5. Informs about trapping mechanisms
(specifically contact area and capillary trapped
CO2)
High pressure (and flow rate) injection
test (“apretón”)
• Inject a high flow rate at a very high
pressure (some 100 bar at surface)
• Observe pore fluid pressure, rock
deformation and possible microseisms
Hydro-mechanical coupling during “apretón”
As fluid pressure increases,
the seal bends
P goes up
immediately
At first,
P drops
Heating test (“calentón”)
•
•
•
•
Heat up the heater along the whole borehole
Observe temperature buildup
Deduce termal capacity and conductivity
Deduce presence of CO2 (either continuous
phase durind injection tests, or capillary
trapped during CO2 “mete saca”)
CO2 injection tests
– Conventional
– Fluctuating flow rate
– Liquid CO2 injection
– Others
Fuctuating injection
Inject during short periods followed by resting periods
to promote mixing
Basic objective is to accelerate CO2 disolution and
transport in suspension, which should improve
efficiency
Anticipate two test:
1) 12 h injection (2 kg/s) and 12 h rest during at least
1 month.
2) 6 h injection (4 kg/s) and 18 h rest during at least 1
month.
Low T CO2 injection
Objetive: inject in liquid phase
- Reduce injection pressure and volume (reduce energy
cost because the weight of CO2 column helps)
- Easier to inject
Proposed
conventional
Inject dissolved CO2 to minimize total fluid
volume and overpressure
P
Sobrepresión causada por inyección
Sobrepresión con extracción de
agua salada
Presión inicial
Extracción de
agua salada
distancia
CO2
Formació
n
Agua sala
d
sello
a con CO
2
Flujo de C
O2 disuelt
o hacia la
mas profu
s partes
ndas del a
cuífero
Figura 2: Representación esquemática de la inyección de CO2 disuelto. Obsérvese
(arriba) que la sobrepresión sólo afecta a una pequeña parte del acuífero, lo que
elimina los riesgos sobre la formación sello y de fugas de CO2 o salmuera.
As it turned out…
• Geological prognosis turned out to be untrue
• Permeability appears to be much lower than
expected
• Money run out (much simpler instrumentation)
• We will see