Un m´etodo de detecci´on de errores magn´eticos de alta precisi´on
Transcripción
Un m´etodo de detecci´on de errores magn´eticos de alta precisi´on
Un método de detección de errores magnéticos de alta precisión en RHIC y el LHC Javier Cardona Mayo 2010 – p.1/33 Contenido Introducción Método de Salto de Acción y Fase Resultados de las simulaciones Experimentos • Órbitas con errores cuadrupolares conocidos • Determinación de errores cuadrupolares en RHIC • Experimentos no lineales en el SPS • Algunos resultados en el LHC • Planes para el LHC • • • • – p.2/33 Los Aceleradores y su Importancia • Fundamental para comprender la estructuras elementales de la naturaleza. • Producen la llamada radiación de sincrotrón ampliamente utilizada en muy diversos campos de la ciencia. • Diagnóstico y tratamiento de cáncer en medicina. • Los aceleradores pueden ser lineales o circulares siendo los sincrotrones los más populares. – p.3/33 Dipolo del Sincrotrón Para una partícula “ideal” se tiene que: p = BR e – p.4/33 Lente Magnética: El Cuadrupolo – p.5/33 Campo Magnético del Cuadrupolo Un par de cuadrupolos enfocan en X y Y – p.6/33 Principio del Sincrotrón – p.7/33 Trayectorias del Haz de Partı́culas 2 x[mm] Oscilacion de Betatron Trayectoria Disenada 0 -2 800 850 900 950 1000 Coordenada longitudinal "s" [m] x(s) = A ∗ p βx (s) sin (ψx (s) − ϕ) Todas las partículas oscilan con fases diferentes dando lugar al perfil longitudinal característico del haz. – p.8/33 Efecto de un Error Magnético en el Haz α + ∆ x’ α α = eBl/p α Después de un error magnético, el haz como un todo realiza oscilaciones de betatron. – p.9/33 Errores Magnéticos • Errores Dipolares: ∆x′ = e∆Bl p = B0 • Errores Cuadrupolares: ∆x′ = A1 y − B1 x • Errores Sextupolares: ∆x′ = 2A2 xy + B2 (−x2 + y 2 ) • En General: ∆x′ = B0 −B1 x+A1 y+2A2 xy+B2 (−x2 +y 2 )+... Estos errores siempre están presentes en los imanes de un acelerador. Cómo se miden ?. – p.10/33 Métodos de Detección de Errores • Matriz respuesta [J. Safranek,1997 ] • Términos resonantes [R. Bartolini, 1998] • Análisis independiente del modelo [J. Irwin, 1999] • Corrección de Modelo Iterativo [M. Aiba et al, 2009] • Acción y Fase [J. Cardona, Physical Review ST AB 12, 2009] – p.11/33 Principle of Action and Phase Jump (1) Assume a particle is launched in a lattice with a gradient error x (mm) 5 0 -5 0 1000 2000 s (m) 3000 4000 0 1000 Quad Error 2000 s (m) 3000 4000 2 1 0 -1 -2 – p.12/33 Principle (2) There are two possibilities to describe the particle trajectory: p x(s) = 2JβN (s) sin(ψN (s) − δ) βN and φN are the new lattice functions generated by the magnetic error. Or, x(s) = x(s) = p p 2J0 βD (s) sin(ψD (s) − δ0 ) f or s < s1 2J1 βD (s) sin(ψD (s) − δ1 ) f or s > s1 βD and φD are the designed beta functions. Here, “constants” J and δ change instead of lattice functions. – p.13/33 x (mm) Principle (3) (a) 5 0 -5 -10 0 1000 3000 4000 2 (b) 1 0 -1 -2 0 2000 s (m) 1000 2000 s (m) 3000 4000 3000 4000 3000 4000 action (nm) 370 (c) J0 360 350 340 J1 0 1000 phase (rad) 3.2 (d) 3.1 2000 s (m) δ0 δ1 3 2.9 0 1000 s = sθ 2000 s (m) – p.14/33 Error Strength Not only the location of the error can be easily determined but also the strength of the error: ′ ∆x = θz = s √ 2J0 + 2J1 − 4 ∗ J0 J1 cos(δ1 − δ0 ) βz (sθ ) – p.15/33 Multipole Components of Magnetic Errors The magnetic error is a contribution from different multipole components: θx = B0 − B1 x(sθ ) + A1 y(sθ ) + 2A2 x(sθ )y(sθ ) +B2 [−x2 (sθ ) + y 2 (sθ )] + ..., θy = A0 + A1 x(sθ ) + B1 y(sθ ) + 2B2 x(sθ )y(sθ ) +A2 [x2 (sθ ) − y 2 (sθ )] + ... where Bn and An are values related with the normal and skew multipole components of the error ∆B. – p.16/33 Estimating Errors (One Multipole) θx y(sθ ) + θy x(sθ ) A1 = 2 x (sθ ) + y 2 (sθ ) θy y(sθ ) − θx x(sθ ) B1 = 2 x (sθ ) + y 2 (sθ ) If only one error multipole component is present, only one particle trajectory is needed. – p.17/33 θx (µrad), θy (µrad), y( sθ) (mm) Estimating Errors (Several Multipoles) Several error multipole components -> several orbits with different amplitudes 0 θy θx θy y(sθ) y(s θ) -10 θx -20 -40 -30 -20 x(sθ) (mm) – -10 0 p.18/33 Estimating Errors (Several Multipoles) θx θy = C1x x(sθ ) + C2x x2 (sθ ) + cte 2 = C1y x(sθ ) + C2y x (sθ ) + cte y(sθ ) = mx(sθ ) + b A1 = B1 = A2 = B2 = C1x m + C1y 1 + m2 C1x − C1y m − 1 + m2 −C2y − 2C2x m + C2y m2 − 1 + 2m2 + m4 C2x − 2C2y m − C2x m2 − 1 + 2m2 + m4 – p.19/33 Results of Simulations Simulations of particle trajectories with a gradient error, a skew quadrupole error, and a sextupole error were done. The difference between set errors and and errors estimated from action and phase analysis were: • 0.03% or less for gradient errors. • 0.01% or less for skew quadrupole errors. • 3% or less for sextupole errors. – p.20/33 Linear Experiments with Beam in RHIC – p.21/33 Experimental Conditions Required • Large betatron oscillations usually excited by dipole correctors. • The trajectory should have a maximum at the place where the error is being estimated. • Systematic errors and dipole errors are eliminated using difference orbits. • Difference orbits are now made with two turns of the same multiturn orbit. – p.22/33 y (mm) Action and Phase Analysis on a Difference Orbit 6 3 0 -3 -6 (a) 2000 action (nm) 2 (b) 1 0 -1 -2 2000 80 ARC IR ARC 3000 2500 s (m) (c) J1 60 40 20 J0 2000 3 3000 2500 s (m) 3,2 phase (rad) 3000 2500 s (m) (d) 2,8 δ1 δ0 2,6 2000 3000 2500 s (m) – p.23/33 Experiments with Known Gradient Errors (1) • Large beam orbits were excited changing a quadrupole corrector bi8-qs3 at IR8. • Action and phase analysis of first turn orbits for each setting of bi8-qs3 were done. • Difference orbits were built using two different methods. – p.24/33 Experiments with Known Gradient Errors (1) -3 -1 measured skew error (10 m ) 20 expected values previous analysis current analysis 10 0 -10 -20 -20 -10 0 10 -3 -1 set skew error (10 m ) – 20 p.25/33 Skew Quad Error Measurements (1) • Skew quad errors (A1 ) were measured for all RHIC IRs using the action and phase analysis. • Roll angles of the quads were also measured during the 2002 RHIC shutdown period. • q P3 φi i βi β ) (−2 x y i=1 fi eq p sc sc A1 = βx βy – p.26/33 Skew Quad Error Measurements (2) 2 Measured A1 A1 from measured rolls A1 [1/m] 1 0 Blue - 6 Blue - 8 Blue-1 Blue -2 Blue - 5 Yell - 6 Yell - 8 Yell-1 Yell-2 Yell - 5 Triplets -1 -2 Local skew quadrupole correctors were set according to these values. – p.27/33 Nonlinear Experiments with Beam in the SPS (1) Sextupoles were intentionally turn on at specific locations 4 turn 89 turn 96 turn 102 phase (rad) 3 2 sext. 32 sext. 83 1 sext. 72 0 0 sext. 12 sext. 63 2000 4000 s (m) – 6000 p.28/33 Nonlinear Experiments with Beam in the SPS (2) 30 θx (µrad) 25 measured strengths nonlinear fit 20 15 10 5 0 5 x(sθ) (mm) 10 K2L = (0.438 ± 0.032)m−2 from the fit of the experimental points which is in good agreement with the set value. – p.29/33 Correction of Quadrupole Errors in the LHC (1) After B2 Correction Before Correction Horizontal Phase [rad] 3 2 1 0 5000 10000 20000 15000 s [m] – 25000 p.30/33 Correction of Quadrupole Errors in the LHC (2) – p.31/33 Plans for the LHC • Action and phase analysis of experimental orbits to localize main errors. • Estimation of magnetic errors from the experimental orbits . • What correctors should be used and how they should be set. • Software automatization. • Comparisons with other methods. – p.32/33 References [1] J. Cardona, S. Peggs, “Linear and Nonlinear Magnetic Error Measurements using Action and Phase Jump Analysis”, Physical Review ST AB 12, 014002 (2009). [2] J. Cardona, “Local Magnetic Error Estimation using Action and Phase Jump Analysis of Orbit Data”, PAC’07, Albuquerque, New Mexico (2007). [3] J. Cardona, R. T. Garcia, “Non Linear Error Analysis from Orbit Measurements in SPS and RHIC”, PAC’05, Knoxville, Tennesse (2005). [4] J. Cardona, S. Peggs, F. Pilat, V. Ptitsyn, “ Measuring Local Gradient and Skew Quadrupole Errors in RHIC IRs” ,EPAC’04, Lucerne, Switzerland (2004). [5] J. Cardona, “Linear and Non Linear Studies at RHIC Interaction Regions and Optical Design of the Rapid Medical Synchrotron”, Ph.D. thesis, Stony Brook University, (2003). – p.33/33