ESTIMATING VENT OPENING (CANARY ISLANDS) USING NE
Transcripción
ESTIMATING VENT OPENING (CANARY ISLANDS) USING NE
XIV Reunión Nacional de Cuaternario, Granada 2015 ESTIMATING VENT OPENING PROBABILITY ON EL HIERRO ISLAND (CANARY ISLANDS) USING NEW GEOCHRONOLOGICAL DATA L. Becerril (1), T. Ubide (2), C. Galé (3), I. Galindo (4), J. M. Morales (4), M. Lago(3), J. Martí (1), J.P. Galve (5) (1) Institute of Earth Sciences Jaume Almera, ICTJA ICTJA-CSIC, CSIC, Lluis Sole i Sabaris s/n, 08028 Barcelona, Spain. [email protected]; [email protected] (2) School of Natural Sciences, Department of Geology, Trinity College Dublin, Dublin 2, Ireland Ireland. [email protected] (3) Department of Earth h Sciences, Faculty of Sciences, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain. [email protected]; [email protected] (4) Spanish Geological Survey (IGME), Unit of Canary Islands, Alonso Alvarado, 43, 2ºA, 35003 Las Palmas de Gran Canaria, Spain. [email protected]; [email protected] (5) Departamento rtamento de Geodinámica, Universidad de Granada, Campus Universitario de Fuentenueva s/n, 18071-Granada, 18071 España. [email protected] Estimación de la probabilidad de apertura de centros de emisión en la isla de El Hierro (Islas Canarias) Resumen (Estimación mediante nuevos datos geocronológicos geocronológicos): Evaluar la peligrosidad volcánica en zonas activas resulta un desafío a la par que una tarea imprescindible. La zona volcánica más activa de España España,, el archipiélago Canario, se caracteriza por una baja frecuencia eruptiva, lo que ha conducido conducido, en cierto modo, a subestimar la peligrosidad inherente a los procesos eruptivos. La última erupción ocurrida en 2011-2012 2012 en la isla de El Hierro puso de manifiesto la necesidad de llevar a cabo estudios estud de esta índole en todo el archipiélago. Por ello, en este trabajo se presenta el mapa cuantitativo de peligrosidad volcánica desarrollado desarrol a partir de la combinación del mapa de probabilidad espacial y el cálculo del periodo de recurrencia. Este mapa muestra que la mayor probabilidad de albergar centros eruptivos está en la parte distal del rift oeste oeste, con un periodo de recurrencia de aproximadamente 1000 años estimado mediante los datos geocronológicos disponibles disponibles. Palabras clave: Dataciones; recurrencia cia eruptiva; peligrosidad volcánica; El Hierro; Islas Canarias Canarias. Key words:: Dating; eruptive recurrence; volcanic hazard; El Hierro; Canary Islands. INTRODUCCIÓN The volcanic hazard of a given area is the probability that it will be affected by a process of a certain volcanic magnitude within a specific time interval (UNESCO, 1972; Fournier d'Albe, 1979). Therefore, volcanic hazard assessment must necessarily be based sed on good knowledge of the past eruptive history of the volcanic area, which will tell us ‘how’ eruptions have occurred. It also requires the spatial probability of occurrence of a hazard to be determined, i.e. ‘where’ the next eruption can take place (v (volcanic susceptibility) and its extent, as well as its temporal probability, i.e. ‘when’ the next eruption may occur in the near future. Therefore, volcanic olcanic hazard analyses in any volcanic area require a thorough understanding of the volcanic system under study. In the particular case of the he Canary Islands Islands, its volcanic nature coupled with its high population density means that volcanic hazard and risk analyses must be undertaken for mitigating the consequences of future eruptions. The Canary Islan Islands, that represent one of the world’s largest oceanic volcanic regions, are the only area of Spain affected by eruptions in the last 600 years. Furthermore, its high population (2.098.649 inhabitants according to ISTAC, 2014)) together with the millions of visitors that the islands receive every year makes the archipelago particularly vulnerable to hazardous volcanic processes. Thus, the impact of an eruption affecting any of the islands will be very important in social and economic terms. With that in mind, volcanic hazard and risk analyses may be essential tools for reducing this impact and increasing the resilience of the Canarian socio-economic economic system. Unfortunately, there are very few studies focused on volcanic hazard assessment on the Canary Islands. Most work to date has been focused on Tenerife and Lanzarote (e.g. Gómez-Fernández, Fernández, 1996; Araña et al., 2000; Felpeto et al., 2001, 2007; Felpeto, 2002; Carracedo et al., 2004a, 2004b, 2005; Laín et al., 2008; Martíí and Felpeto, 2010; Sobradelo et al., 2011; Martí et al., 2012; Bartolini et al., 2013). In Gran Canaria, only a qualitative volcanic hazard assessment has been developed (Rodríguez(Rodríguez González, 2009; Rodríguez-González Rodríguez et al., 2009). More recently studies focused ocused on volcanic hazard have been developed on El Hierro (Becerril et al., 2013, 2014). The latter studies calculated spatial and temporal probabilities,, performing different eruptive scenarios, in order to evaluate the potential extent of the main eruption hazards, and obtained the first qualitative hazard map for El Hierro. Hierro In these studies, spatial probability was obtained for vent opening and also for the main expected hazards on the island that are lava flows, pyroclastic density currents (PDCs) and ashfall. Temporal probabilities were calculated through Bayesian inference using an event tree based on the methodology of Sobradelo et al. (2011, 2014). Here we present the estimation of the long-term long probability of vent opening, that is, the volcanic hazard of future vents. We have combined the spatial probability of vent opening ning (susceptibility estimationBecerril et al., 2013) with the recurrence period obtained from new and previous geochronological data (Becerril et al., in press). press The final result is the first quantitative or spatio-temporal temporal probability map of XIV Reunión Nacional de Cuaternario, Granada 2015 Fig. 1: Geographical location and nd geological map of El Hierro IIsland sland (Simplified geological map from IGME, 2011). The geological map includes the location of newly dated samples and those previously dated samples. See references in the list. vent opening of El Hierro. This map represent represents the first attempt to provide a forecast about the future timing and location of El Hierro eruptions. GEOLOGICAL FRAMEWORK El Hierro is the south-western western most and smallest island of the Canary archipelago, with an area of 2 ~269 km (Fig. 1). The island represents the subaerial part of a volcanic edifice that has a total height of 5,500 m. With its oldest subaerial deposits dated at 1.12 Ma, this island is considered to be the youngest in the Canary archipelago (Fuster et al., 1993; Guillou et al., 1996). El Hierro is the result of three main volcanic cycles corresponding to the construction and partial destruction of successive volcanic edifices (Guillou et al., 1996; IGME, 2010a). ). The first edifice corresponds to the e Tiñor volcano (1.12 (1.12–0.88 Ma), that crops out mainly in the incised valleys and cliffs of the NE of the island. The second edifice, El GolfoLas Playas Edifice (545–176 ka), was constructed attached to the western flank of the remains of the previous edifice. The last growing stage of El Hierro, Rift volcanism (158 ka–Present Present time) time), is characterised by steep narrow ridges formed by clusters of cinder cones (Fig. 1). (Carracedo Carracedo et al., 2001; Becerril et al., 2015). These three main volcanic cycles have contributed to the growth of the island, nevertheless periods of quiescence, erosion and sector collapse separated these cycles. At least five debris avalanches have taken place during the construction of the volcano, notably changing the morphology of the island (Fig. 1) (Masson, 1996; Urgeles et al., 1996, 1997; Carracedo et al., 1999, 2001; Masson et al., 2002; Longpré et al., 2011). The ages of the debris avalanches range from <880 ka and 545 545–176 ka for s Playas I (II, III in Fig. 1), to El Julan Tiñor and Las (>158 ka; IV in Figure 1)) and Las Playas II (176–145 (176 ka; V in Fig. 1), located at the SW and at SE of the island respectively (Fig. 1). ). The most recent landslide corresponds to El Golfo, whose age has been recently constrained between 87–39 87 ka (Longpré et al., 2011) (VI in Fig. 1). ). All of these events have led to the exposure of several main features of the volcano-tectonic tectonic structure of the island. Another landslide has been proposed during the first stages of the subaerial construction of the island, probably between 1.12 and 1.04 4 Ma, affecting the northern side of the Tiñor Edifice (I in Fig. Fig 1) (IGME, 2010a). Recent subaerial volcanism on El Hierro is monogenetic and is mostly characterised by effusive magmatic eruptions of basic composition, as well as by Hawaiian-Strombolian episodes fed by subvertical dykes (Becerril et al. 2013;; 2014), combined with a number of hydromagmatic eruptions (Becerril, 2009). The island’s eruptions have ave been mainly mafic in nature (Pellicer, 1977; Aparicio et al., 2003; Stroncik et al., 2009). Some felsic dykes, lava flows and a PDC deposit, associated with the older parts of the island have also been reported (Guillou et al., 1996; Carracedo et al., 2001; Pedrazzi et al., 2014), but they are volumetrically subordinate to the mafic materials. Eruptions on El Hierro typically occur from fissures fed by subvertical dykes (Becerril et al., 2015), 2015) and produce proximal fallout, ballistic ejecta and lava flows. PDC deposits have also been reported in cases in which eruptions are related to hydromagmatic ic episodes (IGME, 2010a; 2010 Pedrazzi et al., 2014). XIV Reunión Nacional de Cuaternario, Granada 2015 METHODOLOGY To assess the vent opening hazard we have used the previous studies developed on n this matter on the island. The spatial probabilities of hosting new vents were used from Becerril et al. (2013) (2013). This study on the volcanic susceptibility on El Hierro takes into accounts most of the structural data available from the island (vents, eruptive fissures, dykes and faults) faults). The temporal part of the long-term term vent opening hazard assessment correspondss to the recurrence rate estimation (Becerril et al., in press press). For that, we did a preliminary revision and interpretation of previous geochronological material on El Hierro Hierro. According to Carracedo et al. (2001), lavas forming eroded coastal cliffs were emitted before and during the last glacial maximum (more than 20 ka ago; Fig. 1). Eruptions that fossilise the mentioned cliffs or generate coastal lava platforms occurred after that date. This geomorphological criterion allowed us to identify relative ages of the most recent volcanoes on the island. In addition, we collected new samples 40 39 from recent volcanoes for dating with Ar/ Ar and 14 C techniques (Becerril et al., in press press). The new and previous available geochronological data from the last 33 ka, have been used to calculate the average recurrence rates of volcanic activity through a straightforward method proposed by Connor and Conway (2000). The formula used to the recurrence rate calculus is given by: ேିଵ ߣ௧ ൌ Eq. (1) ௧ି௧ where N is the total number of volcanic eruptions or vents, to is the age of the oldest event and ty is the age of the youngest event. The construction of the qualitative vent opening hazard map has been developed through the combination of the spatial probability map and the estimated recurrence period (Fig. 2) using the software ArcGIS© 10.1 by ESRI. publications have discarded previous published geochronological data. After a meticulous checking of published information, we have used 4 geochronological records for this study that corresponds to the most recent eruptions of the island (last 33 ka) (Table 1). 40 The geomorphological criteria used to identify relative eruption ages following the previous exposed ideas of Carracedo et al. (2001), have allowed adding to the e eruption catalogue 24 more events occurred in the last 20 ka (Fig. 1,, Table 1). 1 aking together all the available geochronological Taking data (new and previous published data) and the new geomorphological information, information we have identified a minimum of 31 onshore eruptions in the last 33 ka (Fig. 1, Table 1). ). Using these data, the recurrence period estimated for the emerged part of El Hierro -4 using Eq. (1), is 9.7 x10 vents/year (v/yr.), i.e., one eruption approximately in the next 1024 years. Symbol W X 6 12 15 3 16 11 1 E 2 4 5 7 8 9 10 13 14 17 18 19-31 Fig. 2: Spatial probability of vent opening map * temporal probability (Recurrence rate) = Spatio--temporal probability map of vent opening or quantitative hazard map of vent opening. RESULTS Temporal probability of vent opening Previous geochronological studies on El Hierro have used mainly radiometric dating (K-Ar) and magnetostratigraphy, and only few radiocarbon ages have been obtained for the Holocene period of the island. In total we compiled almost 50 ages from different authors that cover the whole volcanostratigraphy, from Tiñor Edifice to the most recent materials of the island. Some recent geochronological data of this catalogue were discarded because the coordinates of the samples were unknown or because, in some cases, recent 39 Two new Ar/ Ar ages corresponding to feeder fe 14 dykes and lava flows and one C age from a charcoal collected at the base of a lava flow range from 33±12 ka to 2.28±0.3 ka (Becerril et al., in press). ). The latter is the most recent eruption dated on the island so far previous to the 2011-2012 2011 eruption. Three of these new data have been taken into account for this work (Fig Fig 1, Table 1). Volcano Mt.Chamuscada Mt.Humillderos Mt.Marcos Mt.Tamaduste Mt.Escobar Irama-Restinga Los Cascajos Mt.Aguarijo Mt.La Cancela Mt.La Estaca Mt. Mercader Mt.del Guanche El Lajial Mt.Colorada Mt.Orchilla Mt.Las Calcosas Mt.Hoyo del Verodal Cuchillo del Roque-Roque del Conde Cones inside El Golfo embayment Dating technique 14 C 14 C K-Ar K-Ar 40 Ar/39Ar 14 C Age (ka) 2,5 ± 0,07 5,1 ± 0,04 8±2 ca. 9 33 ± 12 7±2 2,28 ± 0,03 < 20 < 11.7 (Holocene) Geomorphological Criteria < 20 Table 1: Published geochronological absolute data and relative ages of El Hierro recent volcanoes used in this study. See also Fig.1. For more information about data see the geochronological catalogue ue in Becerril et al. (in press). Quantitative hazard map of vent opening The spatiotemporal probability map of vent opening or quantitative hazard map of El Hierro (Fig. (Fig 3) has been developed through the combination of the spatial probability map (see Becerril et al., 2013) and the estimated recurrence period (Becerril et al., in press). Thus, the quantitative hazard map represents the annual probability of each pixel to host a new vent (Fig. 3A). A). A model for the next five years has also been calculated (Fig. 3B). 3 In order to know the annual probability to host new vents in a specific area of the island, i it is necessary to sum all the pixel values contained in this particular area. For example, the sum of the pixel probabilities XIV Reunión Nacional de Cuaternario, Granada 2015 Fig. 3: Spatio-temporal temporal probability map of vent opening. Two maps have been developed through a probabilistic model of 10 x 10 m cell size. This model provides minimum estimates of the (A) annual and (B) five years probability of new vent opening.. The highest value estimated with the model is located in the west rift. The maximum cell value is very low for 2015 (1.05 x 10-9), and attains the top value in the spatio-temporal probability map for the next 5 years (5.2 x 10-9). 2 for the Municipality of Valverde (~104 km ) that represents almost 40% of the total area of the island, -4 reaches a value of 4.3 * 10 , that means that at least 4 vents may be expected in the next 10,000 years, according to the map. Adding the values of all pixels of the island as a whole, a spatio-temporal temporal probability -4 value of 9.7 * 10 is obtained. It is worth to note that these recurrence rates are, as in the case of the hazard level delineation (see Becerril et al., 2014), dependent on the current available data. They are therefore likely to be calculated more accurately as new geochronological data from recent eruptions ons are obtained. FINAL CONSIDERATIONS The volcanic hazard assessment on any volcanic area, and also in the particular case of El Hierro Island, may be limited by the lack of a complete geological record (e.g., chronological and stratigraphic data) even by the intrinsic limitations of the methodology used. Therefore,, a comprehensive geochronology of recent volcanic areas as El Hierro, characterized by low frequency activity and with a short historical period, is of primary importance to better constrain the temporal evolution of its volcanism and d its potential for future reactivation reactivation. This will provide the clues to estimate recurrence rates and hence to better assess the volcanic hazard. The temporal probability (recurrence rate) used in the presented map is dependent on the current available data, ta, being therefore likely to be more accurately calculated as new geochronological data from recent eruptions are obtained. Thus, geochronological determinations represent one of the most important pending actions, not only in El Hierro but also in the other Canary Islands. In this particular case, the advantage of conducting a probabilistic vent opening hazard assessment is that the results obtained can be upgraded whenever new geochronological information becomes available, enabling results to improve over time. Spatio-temporal temporal probability maps can be useful for planning and choosing suitable routes for evacuating the island during future volcanic crisis in El Hierro. Long-term term assessment may help decision makers face up to difficult situations, such as the allocation of resources for hazard prevention and evacuation to reduce potential life and economic losses due to volcanic hazards. Acknowledgments: This research was partially financially supported by IGME, CSIC, and MINECO grant GL2011GL2011 16144-E E and was also funded by the Research grant program “Innova Canarias 2020®” from the “Fundación Universitaria de Las Palmas”. References Aparicio, A., Henán, F., ., Cubas, C. R., Araña, V. (2003). Fuentes mantélicas y evolución del volcanismo canario. Estudios Geológicos, 59, 5-13. Araña, V., Felpeto, A., Astiz, M., García, A., Ortiz, R., and Abella, R. (2000). Zonation of the main volcanic hazards (lava flows and ash fall) in Tenerife, Canary Islands. A proposal for a surveillance network. Journal of Volcanology and Geothermal Research, Research 103, 377-391. Bartolini, S., Cappello, A., Martí, J., Del Negro, C. (2013). QVAST: A new Quantum GIS plugin for estimating volcanic susceptibility. Natural Hazards and Earth System Sciences, 13(11), 3031-3042. 3042. Becerril, L. (2009). Approach to volcanic hazard and its effects in coastal areas of the Canary Islands. Islands Master's thesis, Universidad de Las Palmas de Gran Canaria, Spain, Available on line at: http://hdl.handle.net/10553/4595. Becerril, L., Cappello, A., Galindo, I., Neri, M., Del Negro, C. (2013). Spatial probability distribution of future volcanic eruptions at El Hierro Island land (Canary Islands, Spain Journal of Volcanology and Geothermal Research, Research 257, 21-30. Becerril, L., Bartolini, S., Sobradelo, R., Martí, J., Morales, J.M., Galindo, I. (2014). Long-term Long volcanic hazard assessment on El Hierro (Canary Islands). Natural Hazards and Earth System Sciences, Sciences 2, 1799-1835. Becerril, L., Galindo, I., Martí, Gudmundsson, A. (2015). Three-armed armed rifts or masked radial pattern of eruptive fissures? The intriguing case of El Hierro volcano (Canary Islands). Tectonophysics, Tectonophysics 647, 33-47. Becerril, L., Ubide, U., Sudo, M., Martí, J., Galindo, I., Galé, C., Morales, J.M., Yepes, J., Lago, M. (in ( press). New geochronological constraints on the evolution of El Hierro (Canary Islands). Journal of African Earth Sciences. Carracedo, J.C., Day, S., Guillou, H. (1999). Giant Quaternary landslides in the evolution of La Palma and El Hierro, Canary Islands. Journal of Volcanology and Geothermal Research, 94, 169-190. 190. Carracedo, J.C., Badiola, E.R., Guillou, H., de La Nuez, N J. and Pérez Torrado, F.J. (2001).. Geology and volcanology of La Palma and El Hierro, western Canaries. Canaries Estudios Geológicos, 57, 157-273. XIV Reunión Nacional de Cuaternario, Granada 2015 Carracedo, J.C., Guillou, H., Paterne, M., Scaillet, S., Rodríguez Badiola,, E., Paris, R., Pérez Torrado, F.J., and Hansen Machín, A. (2004a). Análisis del riesgo volcánico asociado al flujo de lavas en Tenerife (Islas Canarias): escenarios previsibles para una futura erupción en la isla. Estudios Geológicos, 60, 63-93. o J.C., Guillou H., Paterne M., Scaillet S., Carracedo Rodríguez Badiola E., Paris R., Pérez Pérez-Torrado F.J., and Hansen A. (2004b). Avance de un mapa de peligrosidad volcánica de Tenerife (escenarios previsibles para una futura erupción en la isla).. Santa Cruz de Tene Tenerife, Spain, Servicio de Publicaciones de la Caja General de Ahorros de Canarias, 46 pp. Carracedo, J.C., Pérez-Torrado, Torrado, F.J., Rodríguez Badiola, E., Hansen, A., Paris, R., Guillou, H., Scaillet, S. (2005). Análisis de los riesgos geológicos en el Archipié Archipiélago Canario: Origen, características, probabilidades y tratamiento. Anuario de Estudios Atlánticos Atlánticos, 51, 513-574. Connor, C.B., and Conway, F.M., 2000. Basaltic volcanic Fields. In: Encyclopedia of Volcanoes (H. Sigurdsson, ed) Academic Press, New York, 331-343. 343. Felpeto, A. (2002). Modelización física y simulación numérica de procesos eruptivos para la generación de mapas de peligrosidad volcánica. Ph.D. Thesis, Universidad Complutense de Madrid, 250 pp. Felpeto, A., Araña, V., Ortiz, R., Astiz Astiz, M., and García, A. (2001). Assessment and modelling of lava flow hazard on Lanzarote (Canary Islands). Natural Hazards, 23, 247 247257. Felpeto, A., Martí, J., Ortiz, R. (2007). Automatic GIS GIS-based system for volcanic hazard assessment. Journal of Volcanology ogy and Geothermal Research Research, 166, 106-116. Fournier d’Albe, E.M. (1979). Objectives of volcanic monitoring and prediction.. Journal of the Geological Society (London), 136, 321-326. Fuster, J.M., Hernán, F., Cendrero, A., Coello, J., Cantangrel, J. M., Ancochea, E. and Ibarrola, E. (1993). Geocronología de la isla de El Hierro (Islas Canarias). Boletín de la Real Sociedad Española de Historia Natural (Geología), 88, 86-97. Gómez-Fernández, F. (1996). Desarrollo de una Metodología para el Análisis del Riesgo esgo Volcánico en el marco de un Sistema de Información Geográfica Geográfica. Ph.D. Thesis, Universidad Complutense de Madrid, 255 pp. Guillou, H., Carracedo, J.C., Torrado, F.P. and Badiola, E.R. (1996). K-Ar Ar ages and magnetic stratigraphy of a hotspot-induced, fastt grown oceanic island: El Hierro, Canary Islands. Journal of Volcanology and Geothermal Research, 73, 141-155. IGME (2010a). Mapa Geológico de España, Escala 1:25.000. Isla de El Hierro. Hoja 1105 1105-II, Valverde, 96 pp. IGME (2011). Continuous Digital Geological Map of Spain, Canary Islands, 1:25.000, http://cuarzo.igme.es/sigeco/ http://cuarzo.igme.es/sigeco/. ISTAC, (2014): http://www.gobiernodecanarias.org/istac/ Laín, L., Bellido, F., Pérez, F., Galindo, I., Mancebo, M.J., Llorente, M. (2008). Cartografía de peligrosidad volcánica de Tenerife a escala 1:25.000. Geotemas, 10, 537. VII Congreso Geológico de España, Las Palmas de Gran Canaria (Spain) on 14-18 July 2008. Longpré, M.A., Chadwick, J.P., Wijbrans, J. and Iping, R. (2011).. Age of the El Golfo debris avalanche, El Hierro (Canary Islands): New constraints from laser and furnace 40Ar/39Ar dating. Journal of Volcanology and Geothermal Research, 203, 76-80. Martí, tí, J. and Felpeto, A. (2010). Methodology for the computation of volcanic susceptibility: Application to Tenerife Island (Canary Islands). Journal of Volcanology and Geothermal Research, 195, 69-77. 77. Martí, J., Sobradelo, R., Felpeto, A., and García García, O. (2012). Eruptive scenarios of phonolitic volcanism at Teide Teide-Pico Viejo volcanic complex (Tenerife, Canary Islands). Bulletin of Volcanology, 74, 767-782. 782. Masson, D.G. (1996). Catastrophic collapse of the volcanic island of Hierro 15 Ka ago and the his history of landslides in the Canary Islands. Geology, 24 (3), 231 231-234. Masson, D.G., Watts, A.B., Gee, M.J.R., Urgeles, R., Mitchell, N.C., Le Bas, T.P. and Canals, M. (2002). Slope failures on the flanks of the western Canary Islands. Earth-Science Reviews, 57, 1-35. Pedrazzi, D., Becerril, L., Martí, J., Meletlidis, S., and Galindo, I. (2014). Explosive felsic volcanism on El Hierro (Canary Islands). Bulletin of Volcanology, Volcanology 66:863. Pellicer, M.J. (1977).. Estudio volcanológico de la isla de El Hierro (Islas Canarias). Estudios Geológicos, 33, 181197. Pérez Torrado, F.J., Rodriguez-Gonzalez, Rodriguez A., Carracedo, J.C., Fernandez-Turiel, Turiel, J.L., Guillou, H., Hansen, A. and Rodríguez Badiola, E. (2011 2011). Edades C-14 Del Rift ONO de El Hierro (Islas Canarias). In: El E Cuaternario en España y Áreas Afines, Avances en 2011 (V. Turu and A. Constante, eds). Asociación Española para el Estudio del Cuaternario (AEQUA), 101--104. Pérez-Torrado, Torrado, F.J., Carracedo, J.C., Rodríguez-González, Rodríguez A., Soler, V., Troll, V.R., and Wiesmaier, Wiesmai S. (2012). La erupción submarina de La Restinga en la isla de El Hierro, Canarias: Octubre 2011-Marzo 2011 2012. Estudios Geológicos, 68, 1. González, A. (2009). El Vulcanismo Holoceno de Rodríguez-González, Gran Canaria: Aplicación de un sistema de Información Geográfica.. Ph.D. Thesis, Universidad de Las Palmas de Gran Canaria, 424 pp. Rodríguez-González, González, A., Fernandez-Turiel, Fernandez J.L. PérezTorrado, F.J., Hansen, A., Aulinas, M., Carracedo, J.C., Gimeno, D., Guillou, H., Paris, R., Paterne, M. (2009). The Holocene volcanic history of Gran Canaria Island: implications for volcanic hazards. Journal of Quaternary Science, 24, 697-709. Sobradelo, R., Martí, J., Mendoza-Rosas, Mendoza A.T., Gómez, G. (2011). Volcanic hazard assessment for the Canary Islands (Spain) using extreme-event extreme statistics. Natural Hazards and Earth System Sciences, Sciences 11, 2741-2753. Sobradelo, R., Bartolini, S., Martí, J. (2014). HASSET: a probability event tree tool to valuate future volcanic scenarios using Bayesian inference presented as a plugin for QGIS. Bulletin of Volcanology, Volcanology 76, 770. Stroncik, A., Klügel, A., Hansteen, T. H. (2009). Themagmatic plumbing system beneath El Hierro (Canary Islands): constraints from phenocrysts and naturally quenched basaltic glasses in submarine rocks. Contributions to Mineralogy and Petrology, Petrology 157, 593-607. UNESCO (1972). The surveillance and prediction of volcanic activity. A review of methods and techniques. Unesco, Paris, 166 pp. Urgeles, R., Canals, M., Baraza, J., Alonso, B. (1996). The submarine “El Golfo” debris avalanche and the Canary debris flow, West Hierro Island: the last major slides sli in the Canary archipelago. Geogaceta, Geogaceta 20, 390-393. Urgeles, R., Canals, M., Baraza, J., Alonso, B., Masson, D.G. (1997). The most recent megaslides on the Canary Islands: the El Golfo debris avalanche and the Canary debris flow, west El Hierro Island. Journal of Geophysical Research, 102, 20305-20323 20323.
Documentos relacionados
long-term hazard assessmen volcanic field azard assessment on
Island. For more information see Bartolini et al., 2013, 2014, 2015 and Becerril et al., 2013, 2014. Acknowledgements: VeTools is a project financially supported by the European
Más detalles