ESTIMATING VENT OPENING (CANARY ISLANDS) USING NE

Transcripción

ESTIMATING VENT OPENING (CANARY ISLANDS) USING NE
XIV Reunión Nacional de Cuaternario, Granada 2015
ESTIMATING VENT OPENING PROBABILITY ON EL HIERRO ISLAND
(CANARY ISLANDS) USING NEW GEOCHRONOLOGICAL DATA
L. Becerril (1), T. Ubide (2), C. Galé (3), I. Galindo (4), J. M. Morales (4), M. Lago(3), J. Martí (1), J.P. Galve (5)
(1) Institute of Earth Sciences Jaume Almera, ICTJA
ICTJA-CSIC,
CSIC, Lluis Sole i Sabaris s/n, 08028 Barcelona, Spain.
[email protected]; [email protected]
(2) School of Natural Sciences, Department of Geology, Trinity College Dublin, Dublin 2, Ireland
Ireland. [email protected]
(3) Department of Earth
h Sciences, Faculty of Sciences, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
[email protected]; [email protected]
(4) Spanish Geological Survey (IGME), Unit of Canary Islands, Alonso Alvarado, 43, 2ºA, 35003 Las Palmas de Gran Canaria,
Spain. [email protected]; [email protected]
(5) Departamento
rtamento de Geodinámica, Universidad de Granada, Campus Universitario de Fuentenueva s/n, 18071-Granada,
18071
España. [email protected]
Estimación de la probabilidad de apertura de centros de emisión en la isla de El Hierro (Islas Canarias)
Resumen (Estimación
mediante nuevos datos geocronológicos
geocronológicos): Evaluar la peligrosidad volcánica en zonas activas resulta un desafío a la par que
una tarea imprescindible. La zona volcánica más activa de España
España,, el archipiélago Canario, se caracteriza por una baja
frecuencia eruptiva, lo que ha conducido
conducido, en cierto modo, a subestimar la peligrosidad inherente a los procesos eruptivos. La
última erupción ocurrida en 2011-2012
2012 en la isla de El Hierro puso de manifiesto la necesidad de llevar a cabo estudios
estud
de esta
índole en todo el archipiélago. Por ello, en este trabajo se presenta el mapa cuantitativo de peligrosidad volcánica desarrollado
desarrol
a
partir de la combinación del mapa de probabilidad espacial y el cálculo del periodo de recurrencia. Este mapa muestra que la
mayor probabilidad de albergar centros eruptivos está en la parte distal del rift oeste
oeste, con un periodo de recurrencia de
aproximadamente 1000 años estimado mediante los datos geocronológicos disponibles
disponibles.
Palabras clave: Dataciones; recurrencia
cia eruptiva; peligrosidad volcánica; El Hierro; Islas Canarias
Canarias.
Key words:: Dating; eruptive recurrence; volcanic hazard; El Hierro; Canary Islands.
INTRODUCCIÓN
The volcanic hazard of a given area is the probability
that it will be affected by a process of a certain
volcanic magnitude within a specific time interval
(UNESCO, 1972; Fournier d'Albe, 1979). Therefore,
volcanic hazard assessment must necessarily be
based
sed on good knowledge of the past eruptive history
of the volcanic area, which will tell us ‘how’ eruptions
have occurred. It also requires the spatial probability
of occurrence of a hazard to be determined, i.e.
‘where’ the next eruption can take place (v
(volcanic
susceptibility) and its extent, as well as its temporal
probability, i.e. ‘when’ the next eruption may occur in
the near future. Therefore, volcanic
olcanic hazard analyses
in any volcanic area require a thorough
understanding of the volcanic system under study.
In the particular case of the
he Canary Islands
Islands, its
volcanic nature coupled with its high population
density means that volcanic hazard and risk analyses
must be undertaken for mitigating the consequences
of future eruptions. The Canary Islan
Islands, that
represent one of the world’s largest oceanic volcanic
regions, are the only area of Spain affected by
eruptions in the last 600 years. Furthermore, its high
population (2.098.649 inhabitants according to
ISTAC, 2014)) together with the millions of visitors
that the islands receive every year makes the
archipelago particularly vulnerable to hazardous
volcanic processes. Thus, the impact of an eruption
affecting any of the islands will be very important in
social and economic terms. With that in mind,
volcanic hazard and risk analyses may be essential
tools for reducing this impact and increasing the
resilience of the Canarian socio-economic
economic system.
Unfortunately, there are very few studies focused on
volcanic hazard assessment on the Canary Islands.
Most work to date has been focused on Tenerife and
Lanzarote (e.g. Gómez-Fernández,
Fernández, 1996; Araña et
al., 2000; Felpeto et al., 2001, 2007; Felpeto, 2002;
Carracedo et al., 2004a, 2004b, 2005; Laín et al.,
2008; Martíí and Felpeto, 2010; Sobradelo et al.,
2011; Martí et al., 2012; Bartolini et al., 2013). In
Gran Canaria, only a qualitative volcanic hazard
assessment has been developed (Rodríguez(Rodríguez
González, 2009; Rodríguez-González
Rodríguez
et al., 2009).
More recently studies focused
ocused on volcanic hazard
have been developed on El Hierro (Becerril et al.,
2013, 2014).
The latter studies calculated spatial and temporal
probabilities,, performing different eruptive scenarios,
in order to evaluate the potential extent of the main
eruption hazards, and obtained the first qualitative
hazard map for El Hierro.
Hierro In these studies, spatial
probability was obtained for vent opening and also for
the main expected hazards on the island that are
lava flows, pyroclastic density currents (PDCs) and
ashfall. Temporal probabilities were calculated
through Bayesian inference using an event tree
based on the methodology of Sobradelo et al. (2011,
2014).
Here we present the estimation of the long-term
long
probability of vent opening, that is, the volcanic
hazard of future vents. We have combined the spatial
probability of vent opening
ning (susceptibility estimationBecerril et al., 2013) with the recurrence period
obtained from new and previous geochronological
data (Becerril et al., in press).
press The final result is the
first quantitative or spatio-temporal
temporal probability map of
XIV Reunión Nacional de Cuaternario, Granada 2015
Fig. 1: Geographical location and
nd geological map of El Hierro IIsland
sland (Simplified geological map from IGME, 2011). The
geological map includes the location of newly dated samples and those previously dated samples. See references in the
list.
vent opening of El Hierro. This map represent
represents the
first attempt to provide a forecast about the future
timing and location of El Hierro eruptions.
GEOLOGICAL FRAMEWORK
El Hierro is the south-western
western most and smallest
island of the Canary archipelago, with an area of
2
~269 km (Fig. 1). The island represents the
subaerial part of a volcanic edifice that has a total
height of 5,500 m.
With its oldest subaerial deposits dated at 1.12 Ma,
this island is considered to be the youngest in the
Canary archipelago (Fuster et al., 1993; Guillou et
al., 1996). El Hierro is the result of three main
volcanic cycles corresponding to the construction and
partial destruction of successive volcanic edifices
(Guillou et al., 1996; IGME, 2010a).
). The first edifice
corresponds to the
e Tiñor volcano (1.12
(1.12–0.88 Ma),
that crops out mainly in the incised valleys and cliffs
of the NE of the island. The second edifice, El GolfoLas Playas Edifice (545–176 ka), was constructed
attached to the western flank of the remains of the
previous edifice. The last growing stage of El Hierro,
Rift volcanism
(158 ka–Present
Present time)
time), is
characterised by steep narrow ridges formed by
clusters of cinder cones (Fig. 1). (Carracedo
Carracedo et al.,
2001; Becerril et al., 2015).
These three main volcanic cycles have contributed to
the growth of the island, nevertheless periods of
quiescence, erosion and sector collapse separated
these cycles. At least five debris avalanches have
taken place during the construction of the volcano,
notably changing the morphology of the island (Fig.
1) (Masson, 1996; Urgeles et al., 1996, 1997;
Carracedo et al., 1999, 2001; Masson et al., 2002;
Longpré et al., 2011). The ages of the debris
avalanches range from <880 ka and 545
545–176 ka for
s Playas I (II, III in Fig. 1), to El Julan
Tiñor and Las
(>158 ka; IV in Figure 1)) and Las Playas II (176–145
(176
ka; V in Fig. 1), located at the SW and at SE of the
island respectively (Fig. 1).
). The most recent landslide
corresponds to El Golfo, whose age has been
recently constrained between 87–39
87
ka (Longpré et
al., 2011) (VI in Fig. 1).
). All of these events have led
to the exposure of several main features of the
volcano-tectonic
tectonic structure of the island. Another
landslide has been proposed during the first stages
of the subaerial construction of the island, probably
between 1.12 and 1.04
4 Ma, affecting the northern
side of the Tiñor Edifice (I in Fig.
Fig 1) (IGME, 2010a).
Recent subaerial volcanism on El Hierro is
monogenetic and is mostly characterised by effusive
magmatic eruptions of basic composition, as well as
by Hawaiian-Strombolian episodes fed by subvertical
dykes (Becerril et al. 2013;; 2014), combined with a
number of hydromagmatic eruptions (Becerril, 2009).
The island’s eruptions have
ave been mainly mafic in
nature (Pellicer, 1977; Aparicio et al., 2003; Stroncik
et al., 2009). Some felsic dykes, lava flows and a
PDC deposit, associated with the older parts of the
island have also been reported (Guillou et al., 1996;
Carracedo et al., 2001; Pedrazzi et al., 2014), but
they are volumetrically subordinate to the mafic
materials.
Eruptions on El Hierro typically occur from fissures
fed by subvertical dykes (Becerril et al., 2015),
2015) and
produce proximal fallout, ballistic ejecta and lava
flows. PDC deposits have also been reported in
cases in which eruptions are related to
hydromagmatic
ic episodes (IGME, 2010a;
2010 Pedrazzi et
al., 2014).
XIV Reunión Nacional de Cuaternario, Granada 2015
METHODOLOGY
To assess the vent opening hazard we have used the
previous studies developed on
n this matter on the
island. The spatial probabilities of hosting new vents
were used from Becerril et al. (2013)
(2013). This study on
the volcanic susceptibility on El Hierro takes into
accounts most of the structural data available from
the island (vents, eruptive fissures, dykes and faults)
faults).
The temporal part of the long-term
term vent opening
hazard assessment correspondss to the recurrence
rate estimation (Becerril et al., in press
press). For that, we
did a preliminary revision and interpretation of
previous geochronological material on El Hierro
Hierro.
According to Carracedo et al. (2001), lavas forming
eroded coastal cliffs were emitted before and during
the last glacial maximum (more than 20 ka ago; Fig.
1). Eruptions that fossilise the mentioned cliffs or
generate coastal lava platforms occurred after that
date. This geomorphological criterion allowed us to
identify relative ages of the most recent volcanoes on
the island. In addition, we collected new samples
40
39
from recent volcanoes for dating with Ar/ Ar and
14
C techniques (Becerril et al., in press
press).
The new and previous available geochronological
data from the last 33 ka, have been used to calculate
the average recurrence rates of volcanic activity
through a straightforward method proposed by
Connor and Conway (2000).
The formula used to the recurrence rate calculus is
given by:
ேିଵ
ߣ௧ ൌ
Eq. (1)
௧೚ି௧೤
where N is the total number of volcanic eruptions or
vents, to is the age of the oldest event and ty is the
age of the youngest event.
The construction of the qualitative vent opening
hazard map has been developed through the
combination of the spatial probability map and the
estimated recurrence period (Fig. 2) using the
software ArcGIS© 10.1 by ESRI.
publications have discarded previous published
geochronological data.
After a meticulous checking of published information,
we have used 4 geochronological records for this
study that corresponds to the most recent eruptions
of the island (last 33 ka) (Table 1).
40
The geomorphological criteria used to identify relative
eruption ages following the previous exposed ideas
of Carracedo et al. (2001), have allowed adding to
the
e eruption catalogue 24 more events occurred in
the last 20 ka (Fig. 1,, Table 1).
1
aking together all the available geochronological
Taking
data (new and previous published data) and the new
geomorphological information,
information we have identified a
minimum of 31 onshore eruptions in the last 33 ka
(Fig. 1, Table 1).
). Using these data, the recurrence
period estimated for the emerged part of El Hierro
-4
using Eq. (1), is 9.7 x10 vents/year (v/yr.), i.e., one
eruption approximately in the next 1024 years.
Symbol
W
X
6
12
15
3
16
11
1
E
2
4
5
7
8
9
10
13
14
17
18
19-31
Fig. 2: Spatial probability of vent opening map * temporal
probability (Recurrence rate) = Spatio--temporal probability
map of vent opening or quantitative hazard map of vent
opening.
RESULTS
Temporal probability of vent opening
Previous geochronological studies on El Hierro have
used mainly radiometric dating (K-Ar) and
magnetostratigraphy, and only few radiocarbon ages
have been obtained for the Holocene period of the
island. In total we compiled almost 50 ages from
different
authors
that
cover
the
whole
volcanostratigraphy, from Tiñor Edifice to the most
recent materials of the island. Some recent
geochronological data of this catalogue were
discarded because the coordinates of the samples
were unknown or because, in some cases, recent
39
Two new Ar/ Ar ages corresponding to feeder
fe
14
dykes and lava flows and one C age from a
charcoal collected at the base of a lava flow range
from 33±12 ka to 2.28±0.3 ka (Becerril et al., in
press).
). The latter is the most recent eruption dated
on the island so far previous to the 2011-2012
2011
eruption. Three of these new data have been taken
into account for this work (Fig
Fig 1, Table 1).
Volcano
Mt.Chamuscada
Mt.Humillderos
Mt.Marcos
Mt.Tamaduste
Mt.Escobar
Irama-Restinga
Los Cascajos
Mt.Aguarijo
Mt.La Cancela
Mt.La Estaca
Mt. Mercader
Mt.del Guanche
El Lajial
Mt.Colorada
Mt.Orchilla
Mt.Las Calcosas
Mt.Hoyo del
Verodal
Cuchillo del
Roque-Roque del
Conde
Cones inside El
Golfo embayment
Dating
technique
14
C
14
C
K-Ar
K-Ar
40
Ar/39Ar
14
C
Age (ka)
2,5 ± 0,07
5,1 ± 0,04
8±2
ca. 9
33 ± 12
7±2
2,28 ± 0,03
< 20
< 11.7
(Holocene)
Geomorphological
Criteria
< 20
Table 1: Published geochronological absolute data and
relative ages of El Hierro recent volcanoes used in this
study. See also Fig.1. For more information about data see
the geochronological catalogue
ue in Becerril et al. (in press).
Quantitative hazard map of vent opening
The spatiotemporal probability map of vent opening
or quantitative hazard map of El Hierro (Fig.
(Fig 3) has
been developed through the combination of the
spatial probability map (see Becerril et al., 2013) and
the estimated recurrence period (Becerril et al., in
press). Thus, the quantitative hazard map represents
the annual probability of each pixel to host a new
vent (Fig. 3A).
A). A model for the next five years has
also been calculated (Fig. 3B).
3
In order to know the annual probability to host new
vents in a specific area of the island,
i
it is necessary
to sum all the pixel values contained in this particular
area. For example, the sum of the pixel probabilities
XIV Reunión Nacional de Cuaternario, Granada 2015
Fig. 3: Spatio-temporal
temporal probability map of vent opening. Two maps have been developed through a probabilistic model of 10
x 10 m cell size. This model provides minimum estimates of the (A) annual and (B) five years probability of new vent
opening.. The highest value estimated with the model is located in the west rift. The maximum cell value is very low for 2015
(1.05 x 10-9), and attains the top value in the spatio-temporal probability map for the next 5 years (5.2 x 10-9).
2
for the Municipality of Valverde (~104 km ) that
represents almost 40% of the total area of the island,
-4
reaches a value of 4.3 * 10 , that means that at least
4 vents may be expected in the next 10,000 years,
according to the map. Adding the values of all pixels
of the island as a whole, a spatio-temporal
temporal probability
-4
value of 9.7 * 10 is obtained.
It is worth to note that these recurrence rates are, as
in the case of the hazard level delineation (see
Becerril et al., 2014), dependent on the current
available data. They are therefore likely to be
calculated more accurately as new geochronological
data from recent eruptions
ons are obtained.
FINAL CONSIDERATIONS
The volcanic hazard assessment on any volcanic
area, and also in the particular case of El Hierro
Island, may be limited by the lack of a complete
geological
record
(e.g.,
chronological
and
stratigraphic data) even by the intrinsic limitations of
the methodology used. Therefore,, a comprehensive
geochronology of recent volcanic areas as El Hierro,
characterized by low frequency activity and with a
short historical period, is of primary importance to
better constrain the temporal evolution of its
volcanism and
d its potential for future reactivation
reactivation.
This will provide the clues to estimate recurrence
rates and hence to better assess the volcanic hazard.
The temporal probability (recurrence rate) used in the
presented map is dependent on the current available
data,
ta, being therefore likely to be more accurately
calculated as new geochronological data from recent
eruptions are obtained. Thus, geochronological
determinations represent one of the most important
pending actions, not only in El Hierro but also in the
other Canary Islands. In this particular case, the
advantage of conducting a probabilistic vent opening
hazard assessment is that the results obtained can
be upgraded whenever new geochronological
information becomes available, enabling results to
improve over time.
Spatio-temporal
temporal probability maps can be useful for
planning and choosing suitable routes for evacuating
the island during future volcanic crisis in El Hierro.
Long-term
term assessment may help decision makers
face up to difficult situations, such as the allocation of
resources for hazard prevention and evacuation to
reduce potential life and economic losses due to
volcanic hazards.
Acknowledgments: This research was partially financially
supported by IGME, CSIC, and MINECO grant GL2011GL2011
16144-E
E and was also funded by the Research grant
program “Innova Canarias 2020®” from the “Fundación
Universitaria de Las Palmas”.
References
Aparicio, A., Henán, F.,
., Cubas, C. R., Araña, V. (2003).
Fuentes mantélicas y evolución del volcanismo canario.
Estudios Geológicos, 59, 5-13.
Araña, V., Felpeto, A., Astiz, M., García, A., Ortiz, R., and
Abella, R. (2000). Zonation of the main volcanic hazards
(lava flows and ash fall) in Tenerife, Canary Islands. A
proposal for a surveillance network. Journal of
Volcanology and Geothermal Research,
Research 103, 377-391.
Bartolini, S., Cappello, A., Martí, J., Del Negro, C. (2013).
QVAST: A new Quantum GIS plugin for estimating
volcanic susceptibility. Natural Hazards and Earth
System Sciences, 13(11), 3031-3042.
3042.
Becerril, L. (2009). Approach to volcanic hazard and its
effects in coastal areas of the Canary Islands.
Islands Master's
thesis, Universidad de Las Palmas de Gran Canaria,
Spain,
Available
on
line
at:
http://hdl.handle.net/10553/4595.
Becerril, L., Cappello, A., Galindo, I., Neri, M., Del Negro, C.
(2013). Spatial probability distribution of future volcanic
eruptions at El Hierro Island
land (Canary Islands, Spain
Journal of Volcanology and Geothermal Research,
Research 257,
21-30.
Becerril, L., Bartolini, S., Sobradelo, R., Martí, J., Morales,
J.M., Galindo, I. (2014). Long-term
Long
volcanic hazard
assessment on El Hierro (Canary Islands). Natural
Hazards and Earth System Sciences,
Sciences 2, 1799-1835.
Becerril, L., Galindo, I., Martí, Gudmundsson, A. (2015).
Three-armed
armed rifts or masked radial pattern of eruptive
fissures? The intriguing case of El Hierro volcano
(Canary Islands). Tectonophysics,
Tectonophysics 647, 33-47.
Becerril, L., Ubide, U., Sudo, M., Martí, J., Galindo, I., Galé,
C., Morales, J.M., Yepes, J., Lago, M. (in
( press). New
geochronological constraints on the evolution of El Hierro
(Canary Islands). Journal of African Earth Sciences.
Carracedo, J.C., Day, S., Guillou, H. (1999). Giant
Quaternary landslides in the evolution of La Palma and El
Hierro, Canary Islands. Journal of Volcanology and
Geothermal Research, 94, 169-190.
190.
Carracedo, J.C., Badiola, E.R., Guillou, H., de La Nuez,
N
J.
and Pérez Torrado, F.J. (2001).. Geology and volcanology
of La Palma and El Hierro, western Canaries.
Canaries Estudios
Geológicos, 57, 157-273.
XIV Reunión Nacional de Cuaternario, Granada 2015
Carracedo, J.C., Guillou, H., Paterne, M., Scaillet, S.,
Rodríguez Badiola,, E., Paris, R., Pérez Torrado, F.J., and
Hansen Machín, A. (2004a). Análisis del riesgo volcánico
asociado al flujo de lavas en Tenerife (Islas Canarias):
escenarios previsibles para una futura erupción en la isla.
Estudios Geológicos, 60, 63-93.
o J.C., Guillou H., Paterne M., Scaillet S.,
Carracedo
Rodríguez Badiola E., Paris R., Pérez
Pérez-Torrado F.J., and
Hansen A. (2004b). Avance de un mapa de peligrosidad
volcánica de Tenerife (escenarios previsibles para una
futura erupción en la isla).. Santa Cruz de Tene
Tenerife, Spain,
Servicio de Publicaciones de la Caja General de Ahorros
de Canarias, 46 pp.
Carracedo, J.C., Pérez-Torrado,
Torrado, F.J., Rodríguez Badiola,
E., Hansen, A., Paris, R., Guillou, H., Scaillet, S. (2005).
Análisis de los riesgos geológicos en el Archipié
Archipiélago
Canario: Origen, características, probabilidades y
tratamiento. Anuario de Estudios Atlánticos
Atlánticos, 51, 513-574.
Connor, C.B., and Conway, F.M., 2000. Basaltic volcanic
Fields. In: Encyclopedia of Volcanoes (H. Sigurdsson, ed)
Academic Press, New York, 331-343.
343.
Felpeto, A. (2002). Modelización física y simulación
numérica de procesos eruptivos para la generación de
mapas de peligrosidad volcánica. Ph.D. Thesis,
Universidad Complutense de Madrid, 250 pp.
Felpeto, A., Araña, V., Ortiz, R., Astiz
Astiz, M., and García, A.
(2001). Assessment and modelling of lava flow hazard on
Lanzarote (Canary Islands). Natural Hazards, 23, 247
247257.
Felpeto, A., Martí, J., Ortiz, R. (2007). Automatic GIS
GIS-based
system for volcanic hazard assessment. Journal of
Volcanology
ogy and Geothermal Research
Research, 166, 106-116.
Fournier d’Albe, E.M. (1979). Objectives of volcanic
monitoring and prediction.. Journal of the Geological
Society (London), 136, 321-326.
Fuster, J.M., Hernán, F., Cendrero, A., Coello, J.,
Cantangrel, J. M., Ancochea, E. and Ibarrola, E. (1993).
Geocronología de la isla de El Hierro (Islas Canarias).
Boletín de la Real Sociedad Española de Historia Natural
(Geología), 88, 86-97.
Gómez-Fernández, F. (1996). Desarrollo de una
Metodología para el Análisis del Riesgo
esgo Volcánico en el
marco de un Sistema de Información Geográfica
Geográfica. Ph.D.
Thesis, Universidad Complutense de Madrid, 255 pp.
Guillou, H., Carracedo, J.C., Torrado, F.P. and Badiola,
E.R. (1996). K-Ar
Ar ages and magnetic stratigraphy of a
hotspot-induced, fastt grown oceanic island: El Hierro,
Canary Islands. Journal of Volcanology and Geothermal
Research, 73, 141-155.
IGME (2010a). Mapa Geológico de España, Escala
1:25.000. Isla de El Hierro. Hoja 1105
1105-II, Valverde, 96 pp.
IGME (2011). Continuous Digital Geological Map of Spain,
Canary Islands, 1:25.000, http://cuarzo.igme.es/sigeco/
http://cuarzo.igme.es/sigeco/.
ISTAC, (2014): http://www.gobiernodecanarias.org/istac/
Laín, L., Bellido, F., Pérez, F., Galindo, I., Mancebo, M.J.,
Llorente, M. (2008). Cartografía de peligrosidad volcánica
de Tenerife a escala 1:25.000. Geotemas, 10, 537. VII
Congreso Geológico de España, Las Palmas de Gran
Canaria (Spain) on 14-18 July 2008.
Longpré, M.A., Chadwick, J.P., Wijbrans, J. and Iping, R.
(2011).. Age of the El Golfo debris avalanche, El Hierro
(Canary Islands): New constraints from laser and furnace
40Ar/39Ar dating. Journal of Volcanology and
Geothermal Research, 203, 76-80.
Martí,
tí, J. and Felpeto, A. (2010). Methodology for the
computation of volcanic susceptibility: Application to
Tenerife Island (Canary Islands). Journal of Volcanology
and Geothermal Research, 195, 69-77.
77.
Martí, J., Sobradelo, R., Felpeto, A., and García
García, O. (2012).
Eruptive scenarios of phonolitic volcanism at Teide
Teide-Pico
Viejo volcanic complex (Tenerife, Canary Islands).
Bulletin of Volcanology, 74, 767-782.
782.
Masson, D.G. (1996). Catastrophic collapse of the volcanic
island of Hierro 15 Ka ago and the his
history of landslides in
the Canary Islands. Geology, 24 (3), 231
231-234.
Masson, D.G., Watts, A.B., Gee, M.J.R., Urgeles, R.,
Mitchell, N.C., Le Bas, T.P. and Canals, M. (2002). Slope
failures on the flanks of the western Canary Islands.
Earth-Science Reviews, 57, 1-35.
Pedrazzi, D., Becerril, L., Martí, J., Meletlidis, S., and
Galindo, I. (2014). Explosive felsic volcanism on El Hierro
(Canary Islands). Bulletin of Volcanology,
Volcanology 66:863.
Pellicer, M.J. (1977).. Estudio volcanológico de la isla de El
Hierro (Islas Canarias). Estudios Geológicos, 33, 181197.
Pérez Torrado, F.J., Rodriguez-Gonzalez,
Rodriguez
A., Carracedo,
J.C., Fernandez-Turiel,
Turiel, J.L., Guillou, H., Hansen, A. and
Rodríguez Badiola, E. (2011
2011). Edades C-14 Del Rift ONO
de El Hierro (Islas Canarias). In: El
E Cuaternario en
España y Áreas Afines, Avances en 2011 (V. Turu and A.
Constante, eds). Asociación Española para el Estudio del
Cuaternario (AEQUA), 101--104.
Pérez-Torrado,
Torrado, F.J., Carracedo, J.C., Rodríguez-González,
Rodríguez
A., Soler, V., Troll, V.R., and Wiesmaier,
Wiesmai
S. (2012). La
erupción submarina de La Restinga en la isla de El
Hierro, Canarias: Octubre 2011-Marzo
2011
2012. Estudios
Geológicos, 68, 1.
González, A. (2009). El Vulcanismo Holoceno de
Rodríguez-González,
Gran Canaria: Aplicación de un sistema de Información
Geográfica.. Ph.D. Thesis, Universidad de Las Palmas de
Gran Canaria, 424 pp.
Rodríguez-González,
González, A., Fernandez-Turiel,
Fernandez
J.L. PérezTorrado, F.J., Hansen, A., Aulinas, M., Carracedo, J.C.,
Gimeno, D., Guillou, H., Paris, R., Paterne, M. (2009).
The Holocene volcanic history of Gran Canaria Island:
implications for volcanic hazards. Journal of Quaternary
Science, 24, 697-709.
Sobradelo, R., Martí, J., Mendoza-Rosas,
Mendoza
A.T., Gómez, G.
(2011). Volcanic hazard assessment for the Canary
Islands (Spain) using extreme-event
extreme
statistics. Natural
Hazards and Earth System Sciences,
Sciences 11, 2741-2753.
Sobradelo, R., Bartolini, S., Martí, J. (2014). HASSET: a
probability event tree tool to valuate future volcanic
scenarios using Bayesian inference presented as a
plugin for QGIS. Bulletin of Volcanology,
Volcanology 76, 770.
Stroncik, A., Klügel, A., Hansteen, T. H. (2009).
Themagmatic plumbing system beneath El Hierro
(Canary Islands): constraints from phenocrysts and
naturally quenched basaltic glasses in submarine rocks.
Contributions to Mineralogy and Petrology,
Petrology 157, 593-607.
UNESCO (1972). The surveillance and prediction of
volcanic activity. A review of methods and techniques.
Unesco, Paris, 166 pp.
Urgeles, R., Canals, M., Baraza, J., Alonso, B. (1996). The
submarine “El Golfo” debris avalanche and the Canary
debris flow, West Hierro Island: the last major slides
sli
in
the Canary archipelago. Geogaceta,
Geogaceta 20, 390-393.
Urgeles, R., Canals, M., Baraza, J., Alonso, B., Masson,
D.G. (1997). The most recent megaslides on the Canary
Islands: the El Golfo debris avalanche and the Canary
debris flow, west El Hierro Island. Journal of Geophysical
Research, 102, 20305-20323
20323.

Documentos relacionados

long-term hazard assessmen volcanic field azard assessment on

long-term hazard assessmen volcanic field azard assessment on Island. For more information see Bartolini et al., 2013, 2014, 2015 and Becerril et al., 2013, 2014. Acknowledgements: VeTools is a project financially supported by the European

Más detalles