n - Universidad de La Serena
Transcripción
n - Universidad de La Serena
Diseño y Análisis de Algoritmos Preparándonos para Prueba1 Dr. Eric Jeltsch F. Exercises 1) T (1) = 1 T (n ) = T ( n2 ) + n ( ) T (n ) = O n ?, use substitution method. -------------------------------------------------2) T(a) = Θ(1) T(n) = T(n-a) + T(a) + n Find T(n) using the iteration method. --------------------------------------------------3) Use the Master method to find T(n) = Θ(?) in each of the following cases: 1. T(n) = 7T(n/2) + n2 2. T(n) = 4T(n/2) + n2 3. T(n) = 2T(n/3) + n3 ---------------------------------------------------4) The sequence of Fibonacci is defined as follows: f(0) = 0 f(1) = 1 f(n) = f(n-1) + f(n-2) Find an iterative algorithm and a recursive one for computing element number n in Fibonacci series, Fibonacci(n),. Analyse the running-time of each algorithm. ---------------------------------------------------- 5) Hanoi towers problem: n discs are stacked on pole A. We should move them to pole C, keeping the following constraints: 1. We can move a single disc at a time. 2. We can move only discs that are placed on the top of their pole. 3. A disc may be placed only on top of a larger disc, or on an empty pole. Analyze the given solution for the Hanoi towers problem; how many moves are needed to complete the task? Escuela Ingeniería en Computación, Universidad de La Serena. Diseño y Análisis de Algoritmos Preparándonos para Prueba1 Dr. Eric Jeltsch F. 6) T(1) = 1 T(n) = 2T(n-1) + 1, Use Iteration Method. ------------------------------------------------------7) T(1) = 1 T(n) = T(n-1) + 1/n, Use Integration. ------------------------------------------------------8) T(n) = 3T(n/2) + nlogn, Use the Master-Method to find T(n). Idem for T(n) = T(n/2) + 1/n, T(n) = 2 T(n/2) + n log n, T(n) = 8 T(n/2) + n2 . log n ------------------------------------------------------9) T(n) = 2n T(n/2). Find the solution. ------------------------------------------------------10) n 22 = Ω(n2n) ?, n2n = Ω(2n) ?, 2n = Ω((3/2)n) ?, (3/2)n = Ω(nloglog n) ?, nloglogn = Ω(logn)! ? ------------------------------------------------------11) T(1) = 3 T(n) = 2T(n/2) + 2, n>1 Iteration Method and master Theorem: ------------------------------------------------------12) T (1) = 2 2 n Iteration method: T (n) = T 2 Escuela Ingeniería en Computación, Universidad de La Serena.